Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19867, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191909

RESUMEN

Drosophila suzukii lay eggs in soft-skinned, ripening fruits, making this insect a serious threat to berry production. Since its 2008 introduction into North America, growers have used insecticides, such as pyrethroids and spinosads, as the primary approach for D. suzukii management, resulting in development of insecticide resistance in this pest. This study sought to identify the molecular mechanisms conferring insecticide resistance in these populations. We sequenced the transcriptomes of two pyrethroid- and two spinosad-resistant isofemale lines. In both pyrethroid-resistant lines and one spinosad-resistant line, we identified overexpression of metabolic genes that are implicated in resistance in other insect pests. In the other spinosad-resistant line, we observed an overexpression of cuticular genes that have been linked to resistance. Our findings enabled the development of molecular diagnostics that we used to confirm persistence of insecticide resistance in California, U.S.A. To validate these findings, we leveraged D. melanogaster mutants with reduced expression of metabolic or cuticular genes that were found to be upregulated in resistant D. suzukii to demonstrate that these genes are involved in promoting resistance. This study is the first to characterize the molecular mechanisms of insecticide resistance in D. suzukii and provides insights into how current management practices can be optimized.


Asunto(s)
Drosophila , Combinación de Medicamentos , Perfilación de la Expresión Génica , Resistencia a los Insecticidas , Insecticidas , Macrólidos , Piretrinas , Animales , Resistencia a los Insecticidas/genética , Macrólidos/farmacología , Piretrinas/farmacología , Drosophila/genética , Insecticidas/farmacología , Transcriptoma
2.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766142

RESUMEN

Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.

3.
Genome Biol Evol ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37071791

RESUMEN

Tuta absoluta is one of the largest threats to tomato agriculture worldwide. Native to South America, it has rapidly spread throughout Europe, Africa, and Asia over the past two decades. To understand how T. absoluta has been so successful and to improve containment strategies, high-quality genomic resources and an understanding of population history are critical. Here, we describe a highly contiguous annotated genome assembly, as well as a genome-wide population analysis of samples collected across Latin America. The new genome assembly has an L50 of 17 with only 132 contigs. Based on hundreds of thousands of single nucleotide polymorphisms, we detect three major population clusters in Latin America with some evidence of admixture along the Andes Mountain range. Based on coalescent simulations, we find these clusters diverged from each other tens of thousands of generations ago prior to domestication of tomatoes. We further identify several genomic loci with patterns consistent with positive selection and that are related to insecticide resistance, immunity, and metabolism. This data will further future research toward genetic control strategies and inform future containment policies.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , América Latina , Análisis de Secuencia de ADN , África , Larva/genética
5.
PLoS Genet ; 19(2): e1010649, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809369

RESUMEN

Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.


Asunto(s)
Proteínas de Drosophila , Regulación de la Expresión Génica , Animales , Cromatina , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Drosophila/genética , Proteínas de Drosophila/genética
6.
Curr Biol ; 33(4): 675-687.e5, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36708710

RESUMEN

Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Femenino , Ritmo Circadiano/fisiología , Señales (Psicología) , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Estaciones del Año
7.
Nat Commun ; 12(1): 4173, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234137

RESUMEN

The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.


Asunto(s)
Ritmo Circadiano/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/biosíntesis , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Acetilglucosamina/metabolismo , Animales , Animales Modificados Genéticamente , Vías Biosintéticas/genética , Relojes Circadianos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conducta Alimentaria/fisiología , Femenino , Perfilación de la Expresión Génica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Masculino , Modelos Animales , N-Acetilglucosaminiltransferasas/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
8.
J Econ Entomol ; 114(1): 274-283, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33137187

RESUMEN

Chrysodeixis includens (Walker, [1858]) is one of the most important defoliator of soybean in Brazil because of its extensive geographical distribution and high tolerance to insecticides compared with other species of caterpillars. Because of this, we conducted bioassays to evaluate the efficacy of pyrethroid λ-cyhalothrin on a C. includens resistant strain (MS) and a susceptible (LAB) laboratory strain. High throughput RNA sequencing (RNA-seq) of larval head and body tissues were performed to identify potential molecular mechanisms underlying pyrethroid resistance. Insecticide bioassays showed that MS larvae exhibit 28.9-fold resistance to pyrethroid λ-cyhalothrin relative to LAB larvae. RNA-seq identified evidence of metabolic resistance in the head and body tissues: 15 cytochrome P450 transcripts of Cyp6, Cyp9, Cyp4, Cyp304, Cyp307, Cyp337, Cyp321 families, 7 glutathione-S-transferase (Gst) genes, 7 α-esterase genes from intracellular and secreted catalytic classes, and 8 UDP-glucuronosyltransferase (Ugt) were overexpressed in MS as compared with LAB larvae. We also identified overexpression of GPCR genes (CiGPCR64-like and CiGPCRMth2) in the head tissue. To validate RNA-seq results, we performed RT-qPCR to assay selected metabolic genes and confirmed their expression profiles. Specifically, CiCYP9a101v1, CiCYP6ae149, CiCYP6ae106v2, CiGSTe13, CiCOE47, and CiUGT33F21 exhibited significant overexpression in resistant MS larvae. In summary, our findings detailed potential mechanisms of metabolic detoxification underlying pyrethroid resistance in C. includens.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Piretrinas , Animales , Brasil , Perfilación de la Expresión Génica , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mariposas Nocturnas/genética
9.
PLoS Genet ; 15(10): e1008474, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658266

RESUMEN

Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are the master pacemaker neurons generating locomotor rhythms. Despite the importance of sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOMINO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhythmicity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic behavior, while DOM-B knockdown lengthens circadian period without affecting the circadian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker genes period and timeless, and regulate their protein expression. However, we identify that only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, constitutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of DOM downregulation. Taken together, our findings reveal that two splice variants of DOM play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins and sLNvs maintenance.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Factores de Transcripción/genética , Núcleos Talámicos Ventrales/fisiología , Empalme Alternativo , Animales , Animales Modificados Genéticamente , Técnicas de Observación Conductual , Conducta Animal , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Neuronas/metabolismo , Neuropéptidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo , Núcleos Talámicos Ventrales/citología
10.
Front Plant Sci ; 9: 1256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349546

RESUMEN

Root nodule symbiosis (RNS) is a symbiotic interaction established between angiosperm hosts and nitrogen-fixing soil bacteria in specialized organs called root nodules. The host plants provide photosynthate and the microsymbionts supply fixed nitrogen. The origin of RNS represents a major evolutionary event in the angiosperms, and understanding the genetic underpinnings of this event is of major economic and agricultural importance. Plants that engage in RNS are restricted to a single angiosperm clade known as the nitrogen-fixing clade (NFC), yet occur in multiple lineages scattered within the NFC. It has been postulated that RNS evolved in two steps: a gain-of-predisposition event occurring at the base of the NFC, followed by a gain-of-function event in each host plant lineage. Here, we first explore the premise that RNS has evolved from a single common background, and then we explore whether a two-step process better explains the evolutionary origin of RNS than either a single-step process, or multiple origins. We assembled the transcriptomes of root and nodule of two actinorhizal plants, Ceanothus thyrsiflorus and Datisca glomerata. Together with the corresponding published transcriptomes of the model legume Medicago truncatula, the gene expression patterns in roots and nodules were compared across the three lineages. We found that orthologs of many genes essential for RNS in the model legumes are expressed in all three lineages, and that the overall nodule gene expression patterns were more similar to each other than expected by random chance, a finding that supports a common evolutionary background for RNS shared by the three lineages. Moreover, phylogenetic analyses suggested that a substantial portion of the genes experiencing selection pressure changes at the base of the NFC also experienced additional changes at the base of each host plant lineage. Our results (1) support the occurrence of an event that led to RNS at the base of the NFC, and (2) suggest a subsequent change in each lineage, most consistent with a two-step origin of RNS. Among several conserved functions identified, strigolactone-related genes were down-regulated in nodules of all three species, suggesting a shared function similar to that shown for arbuscular mycorrhizal symbioses.

11.
Genes Dev ; 30(15): 1761-75, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542830

RESUMEN

Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding.


Asunto(s)
Ritmo Circadiano/genética , Codón/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Animales , Retroalimentación Fisiológica , Fosforilación , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína/genética
12.
Sci Rep ; 6: 22587, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26931800

RESUMEN

RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.


Asunto(s)
Insectos/genética , Interferencia de ARN , Saccharomyces cerevisiae/genética , Simbiosis , Animales , Genes de Insecto , Insectos/crecimiento & desarrollo , Insectos/fisiología , Larva/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA