Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Commun ; 15(1): 5119, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879572

RESUMEN

One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.


Asunto(s)
Adenosina Trifosfato , Endocitosis , Retículo Endoplásmico , Receptores ErbB , Mitocondrias , Transducción de Señal , Mitocondrias/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo
2.
EMBO Mol Med ; 16(6): 1324-1351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730056

RESUMEN

Clear-cell renal cell carcinoma (ccRCC), the major subtype of RCC, is frequently diagnosed at late/metastatic stage with 13% 5-year disease-free survival. Functional inactivation of the wild-type p53 protein is implicated in ccRCC therapy resistance, but the detailed mechanisms of p53 malfunction are still poorly characterized. Thus, a better understanding of the mechanisms of disease progression and therapy resistance is required. Here, we report a novel ccRCC dependence on the promyelocytic leukemia (PML) protein. We show that PML is overexpressed in ccRCC and that PML depletion inhibits cell proliferation and relieves pathologic features of anaplastic disease in vivo. Mechanistically, PML loss unleashed p53-dependent cellular senescence thus depicting a novel regulatory axis to limit p53 activity and senescence in ccRCC. Treatment with the FDA-approved PML inhibitor arsenic trioxide induced PML degradation and p53 accumulation and inhibited ccRCC expansion in vitro and in vivo. Therefore, by defining non-oncogene addiction to the PML gene, our work uncovers a novel ccRCC vulnerability and lays the foundation for repurposing an available pharmacological intervention to restore p53 function and chemosensitivity.


Asunto(s)
Carcinoma de Células Renales , Senescencia Celular , Neoplasias Renales , Proteína de la Leucemia Promielocítica , Proteína p53 Supresora de Tumor , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Senescencia Celular/efectos de los fármacos , Animales , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Trióxido de Arsénico/farmacología , Ratones
3.
Nat Commun ; 14(1): 6433, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833263

RESUMEN

Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively. Focusing on the tumor-suppressor p53, we demonstrate that it searches for targets by alternating between rapid diffusion in the interchromatin compartment and compact sampling of chromatin dense regions. Efficient targeting requires balanced interactions with chromatin: fusing p53 with an exogenous intrinsically disordered region potentiates p53-mediated target gene activation at low concentrations, but leads to condensates at higher levels, derailing its search and downregulating transcription. Our findings highlight the role of disordered regions on factors search and showcase a powerful method to generate traffic maps of the eukaryotic nucleus to dissect how its organization guides nuclear factors action.


Asunto(s)
Cromatina , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , Cromosomas/metabolismo , Activación Transcripcional , Núcleo Celular/genética , Núcleo Celular/metabolismo
4.
Radiol Med ; 127(9): 960-972, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36038790

RESUMEN

PURPOSE: To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients' risk stratification. MATERIAL AND METHODS: In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web-mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020). RESULTS: The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816-0.867) on wave 1 and was used to build a 0-100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402-0.8766). CONCLUSIONS: AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis.


Asunto(s)
COVID-19 , Adulto , Inteligencia Artificial , Calcio , Humanos , Estudios Retrospectivos , SARS-CoV-2
5.
Cell Rep ; 40(3): 111124, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858578

RESUMEN

Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , ADN Mitocondrial/genética , Homeostasis , Humanos , Mitocondrias/genética , Mitofagia/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología
6.
Clin Cancer Res ; 28(10): 2167-2179, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35254385

RESUMEN

PURPOSE: The interplay between estrogen receptor (ER) and erbB tyrosine-kinase receptors (RTK) impacts growth and progression of ER-positive (ER+)/HER2-positive (HER2+) breast cancer and generates mitogenic signals converging onto the Cyclin-D1/CDK4/6 complex. We probed this cross-talk combining endocrine-therapy (fulvestrant), dual HER2-blockade (trastuzumab and pertuzumab), and CDK4/6-inhibition (palbociclib; PFHPert). EXPERIMENTAL DESIGN: Cytotoxic drug effects, interactions, and pharmacodynamics were studied after 72 hours of treatment and over 6 more days of culture after drug wash-out in three ER+/HER2+, two HER2low, and two ER-negative (ER-)/HER2+ breast cancer cell lines. We assessed gene-expression dynamic and association with Ki67 downregulation in 28 patients with ER+/HER2+ breast cancer treated with neoadjuvant PFHPert in NA-PHER2 trial (NCT02530424). RESULTS: In vitro, palbociclib and/or fulvestrant induced a functional activation of RTKs signalling. PFHPert had additive or synergistic antiproliferative activity, interfered with resistance mechanisms linked to the RTKs/Akt/MTORC1 axis and induced sustained senescence. Unexpected synergism was found in HER2low cells. In patients, Ki67 downregulation at week 2 and surgery were significantly associated to upregulation of senescence-related genes (P = 7.7E-4 and P = 1.8E-4, respectively). Activation of MTORC1 pathway was associated with high Ki67 at surgery (P = 0.019). CONCLUSIONS: Resistance associated with the combination of drugs targeting ER and HER2 can be bypassed by cotargeting Rb, enhancing transition from quiescence to sustained senescence. MTORC1 pathway activation is a potential mechanism of escape and RTKs functional activation may be an alternative pathway for survival also in ER+/HER2low tumor. PFHPert combination is an effective chemotherapy-free regimen for ER+/HER2+ breast cancer, and the mechanistic elucidation of sensitivity/resistance patterns may provide insights for further treatment refinement.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Resistencia a Antineoplásicos/genética , Estrógenos/metabolismo , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , Antígeno Ki-67 , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo
7.
Transl Androl Urol ; 11(2): 149-158, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35280651

RESUMEN

Background: The combination of radiomic and transcriptomic approaches for patients diagnosed with small clear-cell renal cell carcinoma (ccRCC) might improve decision making. In this pilot and methodological study, we investigate whether imaging features obtained from computed tomography (CT) may correlate with gene expression patterns in ccRCC patients. Methods: Samples from 6 patients who underwent partial nephrectomy for unilateral non-metastatic ccRCC were included in this pilot cohort. Transcriptomic analysis was conducted through RNA-sequencing on tumor samples, while radiologic features were obtained from pre-operative 4-phase contrast-enhanced CT. To evaluate the heterogeneity of the transcriptome, after a 1,000 re-sampling via bootstrapping, a first Principal Component Analyses (PCA) were fitted with all transcripts and a second ones with transcripts deriving from a list of 369 genes known to be associated with ccRCC from The Cancer Genome Atlas (TCGA). Significant pathways in each Principal Components for the 50 genes with the highest loadings absolute values were assessed with pathways enrichment analysis. In addition, Pearson's correlation coefficients among radiomic features themselves and between radiomic features and transcripts expression values were computed. Results: The transcriptomes of the analysed samples showed a high grade of heterogeneity. However, we found four radiogenomic patterns, in which the correlation between radiomic features and transcripts were statistically significant. Conclusions: We showed that radiogenomic approach is feasible, however its clinical meaning should be further investigated.

8.
Eur Radiol Exp ; 6(1): 7, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132475

RESUMEN

BACKGROUND: Malignant mesothelioma (MM) is an aggressive tumor, with a poor prognosis, usually unresectable due to late diagnosis, mainly treated with chemotherapy. BoxA, a truncated form of "high mobility group box 1" (HMGB1), acting as an HMGB1 antagonist, might exert a defensive action against MM. We investigated the potential of BoxA for MM treatment using experimental 40-MHz ultrasound and optical imaging (OI) in a murine model. METHODS: Murine MM cells infected with a lentiviral vector expressing the luciferase gene were injected into the peritoneum of 14 BALB/c mice (7 × 104 AB1-B/c-LUC cells). These mice were randomized to treatment with BoxA (n = 7) or phosphate-buffered saline (controls, n = 7). The experiment was repeated with 40 mice divided into two groups (n = 20 + 20) and treated as above to confirm the result and achieve greater statistical power. Tumor presence was investigated by experimental ultrasound and OI; suspected peritoneal masses underwent histopathology and immunohistochemistry examination. RESULTS: In the first experiment, none of the 7 controls survived beyond day 27, whereas 4/7 BoxA-treated mice (57.1%) survived up to day 70. In the second experiment, 6/20 controls (30.0%) and 16/20 BoxA-treated mice (80.0%) were still alive at day 34 (p = 0.004). In both experiments, histology confirmed the malignant nature of masses detected using experimental ultrasound and OI. CONCLUSION: In our preclinical experience on a murine model, BoxA seems to exert a protective role toward MM. Both experimental ultrasound and OI proved to be reliable techniques for detecting MM peritoneal masses.


Asunto(s)
Proteína HMGB1 , Mesotelioma Maligno , Animales , Modelos Animales de Enfermedad , Ratones , Imagen Óptica , Ultrasonografía
9.
Microbiol Spectr ; 10(1): e0150421, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34985303

RESUMEN

In December 2019, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading worldwide causing the coronavirus disease 2019 (COVID-19) pandemic. The hyperactivation of the immune system has been proposed to account for disease severity and death in COVID-19 patients. Despite several approaches having been tested, no therapeutic protocol has been approved. Given that Cyclosporine A (CsA) is well-known to exert a strong antiviral activity on several viral strains and an anti-inflammatory role in different organs with relevant benefits in diverse pathological contexts, we tested its effects on SARS-CoV-2 infection of lung cells. We found that treatment with CsA either before or after infection of CaLu3 cells by three SARS-CoV-2 variants: (i) reduces the expression of both viral RNA and proteins in infected cells; (ii) decreases the number of progeny virions released by infected cells; (iii) dampens the virus-triggered synthesis of cytokines (including IL-6, IL-8, IL1α and TNF-α) that are involved in cytokine storm in patients. Altogether, these data provide a rationale for CsA repositioning for the treatment of severe COVID-19 patients. IMPORTANCE SARS-CoV-2 is the most recently identified member of the betacoronavirus genus responsible for the COVID-19 pandemic. Repurposing of available drugs has been a "quick and dirty" approach to try to reduce mortality and severe symptoms in affected patients initially, and can still represent an undeniable and valuable approach to face COVID-19 as the continuous appearance and rapid diffusion of more "aggressive"/transmissible variants, capable of eluding antibody neutralization, challenges the effectiveness of some anti-SARS-CoV-2 vaccines. Here, we tested a known antiviral and anti-inflammatory drug, Cyclosporine A (CsA), and found that it dampens viral infection and cytokine release from lung cells upon exposure to three different SARS-CoV-2 variants. Knock down of the main intracellular target of CsA, Cyclophilin A, does not phenocopy the drug inhibition of viral infection. Altogether, these findings shed new light on the cellular mechanisms of SARS-CoV-2 infection and provide the rationale for CsA repositioning to treat severe COVID-19 patients.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , COVID-19/virología , Ciclosporina/farmacología , Citocinas/inmunología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , COVID-19/genética , COVID-19/inmunología , Síndrome de Liberación de Citoquinas , Citocinas/genética , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiología
10.
J Photochem Photobiol ; 10: 100107, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35036965

RESUMEN

We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.

12.
Cells ; 10(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201214

RESUMEN

In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi's sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , Basigina/fisiología , SARS-CoV-2/fisiología , Internalización del Virus , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Basigina/antagonistas & inhibidores , Basigina/genética , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Células Hep G2 , Interacciones Huésped-Patógeno , Humanos , Terapia Molecular Dirigida , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Receptores Virales/metabolismo , Receptores Virales/fisiología , SARS-CoV-2/metabolismo , Células Vero , Tropismo Viral/fisiología
14.
Atherosclerosis ; 328: 136-143, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33883086

RESUMEN

BACKGROUND AND AIMS: The potential impact of coronary atherosclerosis, as detected by coronary artery calcium, on clinical outcomes in COVID-19 patients remains unsettled. We aimed to evaluate the prognostic impact of clinical and subclinical coronary artery disease (CAD), as assessed by coronary artery calcium score (CAC), in a large, unselected population of hospitalized COVID-19 patients undergoing non-gated chest computed tomography (CT) for clinical practice. METHODS: SARS-CoV 2 positive patients from the multicenter (16 Italian hospitals), retrospective observational SCORE COVID-19 (calcium score for COVID-19 Risk Evaluation) registry were stratified in three groups: (a) "clinical CAD" (prior revascularization history), (b) "subclinical CAD" (CAC >0), (c) "No CAD" (CAC = 0). Primary endpoint was in-hospital mortality and the secondary endpoint was a composite of myocardial infarction and cerebrovascular accident (MI/CVA). RESULTS: Amongst 1625 patients (male 67.2%, median age 69 [interquartile range 58-77] years), 31%, 57.8% and 11.1% had no, subclinical and clinical CAD, respectively. Increasing rates of in-hospital mortality (11.3% vs. 27.3% vs. 39.8%, p < 0.001) and MI/CVA events (2.3% vs. 3.8% vs. 11.9%, p < 0.001) were observed for patients with no CAD vs. subclinical CAD vs clinical CAD, respectively. The association with in-hospital mortality was independent of in-study outcome predictors (age, peripheral artery disease, active cancer, hemoglobin, C-reactive protein, LDH, aerated lung volume): subclinical CAD vs. No CAD: adjusted hazard ratio (adj-HR) 2.86 (95% confidence interval [CI] 1.14-7.17, p=0.025); clinical CAD vs. No CAD: adj-HR 3.74 (95% CI 1.21-11.60, p=0.022). Among patients with subclinical CAD, increasing CAC burden was associated with higher rates of in-hospital mortality (20.5% vs. 27.9% vs. 38.7% for patients with CAC score thresholds≤100, 101-400 and > 400, respectively, p < 0.001). The adj-HR per 50 points increase in CAC score 1.007 (95%CI 1.001-1.013, p=0.016). Cardiovascular risk factors were not independent predictors of in-hospital mortality when CAD presence and extent were taken into account. CONCLUSIONS: The presence and extent of CAD are associated with in-hospital mortality and MI/CVA among hospitalized patients with COVID-19 disease and they appear to be a better prognostic gauge as compared to a clinical cardiovascular risk assessment.


Asunto(s)
COVID-19 , Enfermedad de la Arteria Coronaria , Anciano , Calcio , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
15.
J Cardiovasc Comput Tomogr ; 15(5): 421-430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744175

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread worldwide determining dramatic impacts on healthcare systems. Early identification of high-risk parameters is required in order to provide the best therapeutic approach. Coronary, thoracic aorta and aortic valve calcium can be measured from a non-gated chest computer tomography (CT) and are validated predictors of cardiovascular events and all-cause mortality. However, their prognostic role in acute systemic inflammatory diseases, such as COVID-19, has not been investigated. OBJECTIVES: The aim was to evaluate the association of coronary artery calcium and total thoracic calcium on in-hospital mortality in COVID-19 patients. METHODS: 1093 consecutive patients from 16 Italian hospitals with a positive swab for COVID-19 and an admission chest CT for pneumonia severity assessment were included. At CT, coronary, aortic valve and thoracic aorta calcium were qualitatively and quantitatively evaluated separately and combined together (total thoracic calcium) by a central Core-lab blinded to patients' outcomes. RESULTS: Non-survivors compared to survivors had higher coronary artery [Agatston (467.76 â€‹± â€‹570.92 vs 206.80 â€‹± â€‹424.13 â€‹mm2, p â€‹< â€‹0.001); Volume (487.79 â€‹± â€‹565.34 vs 207.77 â€‹± â€‹406.81, p â€‹< â€‹0.001)], aortic valve [Volume (322.45 â€‹± â€‹390.90 vs 98.27 â€‹± â€‹250.74 mm2, p â€‹< â€‹0.001; Agatston 337.38 â€‹± â€‹414.97 vs 111.70 â€‹± â€‹282.15, p â€‹< â€‹0.001)] and thoracic aorta [Volume (3786.71 â€‹± â€‹4225.57 vs 1487.63 â€‹± â€‹2973.19 mm2, p â€‹< â€‹0.001); Agatston (4688.82 â€‹± â€‹5363.72 vs 1834.90 â€‹± â€‹3761.25, p â€‹< â€‹0.001)] calcium values. Coronary artery calcium (HR 1.308; 95% CI, 1.046-1.637, p â€‹= â€‹0.019) and total thoracic calcium (HR 1.975; 95% CI, 1.200-3.251, p â€‹= â€‹0.007) resulted to be independent predictors of in-hospital mortality. CONCLUSION: Coronary, aortic valve and thoracic aortic calcium assessment on admission non-gated CT permits to stratify the COVID-19 patients in-hospital mortality risk.


Asunto(s)
COVID-19/mortalidad , COVID-19/fisiopatología , Angiografía por Tomografía Computarizada , Calcificación Vascular/mortalidad , Calcificación Vascular/fisiopatología , Anciano , Anciano de 80 o más Años , Aorta Torácica/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/mortalidad , Enfermedades de la Aorta/fisiopatología , Válvula Aórtica/diagnóstico por imagen , COVID-19/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/mortalidad , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Calcificación Vascular/diagnóstico por imagen
16.
Eur Radiol ; 31(6): 4031-4041, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33355697

RESUMEN

OBJECTIVES: Enlarged main pulmonary artery diameter (MPAD) resulted to be associated with pulmonary hypertension and mortality in a non-COVID-19 setting. The aim was to investigate and validate the association between MPAD enlargement and overall survival in COVID-19 patients. METHODS: This is a cohort study on 1469 consecutive COVID-19 patients submitted to chest CT within 72 h from admission in seven tertiary level hospitals in Northern Italy, between March 1 and April 20, 2020. Derivation cohort (n = 761) included patients from the first three participating hospitals; validation cohort (n = 633) included patients from the remaining hospitals. CT images were centrally analyzed in a core-lab blinded to clinical data. The prognostic value of MPAD on overall survival was evaluated at adjusted and multivariable Cox's regression analysis on the derivation cohort. The final multivariable model was tested on the validation cohort. RESULTS: In the derivation cohort, the median age was 69 (IQR, 58-77) years and 537 (70.6%) were males. In the validation cohort, the median age was 69 (IQR, 59-77) years with 421 (66.5%) males. Enlarged MPAD (≥ 31 mm) was a predictor of mortality at adjusted (hazard ratio, HR [95%CI]: 1.741 [1.253-2.418], p < 0.001) and multivariable regression analysis (HR [95%CI]: 1.592 [1.154-2.196], p = 0.005), together with male gender, old age, high creatinine, low well-aerated lung volume, and high pneumonia extension (c-index [95%CI] = 0.826 [0.796-0.851]). Model discrimination was confirmed on the validation cohort (c-index [95%CI] = 0.789 [0.758-0.823]), also using CT measurements from a second reader (c-index [95%CI] = 0.790 [0.753;0.825]). CONCLUSION: Enlarged MPAD (≥ 31 mm) at admitting chest CT is an independent predictor of mortality in COVID-19. KEY POINTS: • Enlargement of main pulmonary artery diameter at chest CT performed within 72 h from the admission was associated with a higher rate of in-hospital mortality in COVID-19 patients. • Enlargement of main pulmonary artery diameter (≥ 31 mm) was an independent predictor of death in COVID-19 patients at adjusted and multivariable regression analysis. • The combined evaluation of clinical findings, lung CT features, and main pulmonary artery diameter may be useful for risk stratification in COVID-19 patients.


Asunto(s)
COVID-19 , Arteria Pulmonar , Anciano , Estudios de Cohortes , Femenino , Humanos , Italia/epidemiología , Masculino , Arteria Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
17.
Radiol Med ; 126(3): 498-502, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33165767

RESUMEN

PURPOSE: In overwhelmed emergency departments (EDs) facing COVID-19 outbreak, a swift diagnosis is imperative. CT role was widely debated for its limited specificity. Here we report the diagnostic role of CT in two EDs in Lombardy, epicenter of Italian outbreak. MATERIAL AND METHODS: Admitting chest CT from 142 consecutive patients with suspected COVID-19 were retrospectively analyzed. CT scans were classified in "highly likely," "likely," and "unlikely" COVID-19 pneumonia according to the presence of typical, indeterminate, and atypical findings, or "negative" in the absence of findings, or "alternative diagnosis" when a different diagnosis was found. Nasopharyngeal swab results, turnaround time, and time to positive results were collected. CT diagnostic performances were assessed considering RT-PCR as reference standard. RESULTS: Most of cases (96/142, 68%) were classified as "highly likely" COVID-19 pneumonia. Ten (7%) and seven (5%) patients were classified as "likely" and "unlikely" COVID-19 pneumonia, respectively. In 21 (15%) patients a differential diagnosis was provided, including typical pneumonia, pulmonary edema, neoplasia, and pulmonary embolism. CT was negative in 8/142 (6%) patients. Mean turnaround time for the first COVID-19 RT-PCR was 30 ± 13 h. CT diagnostic accuracy in respect of the first test swab was 79% and increased to 91.5% after repeated swabs and/or BAL, for 18 false-negative first swab. CT performance was good with 76% specificity, 99% sensitivity, 90% positive predictive value and 97% negative predictive value. CONCLUSION: Chest CT was useful to streamline patients' triage while waiting for RT-PCR in the ED, supporting the clinical suspicion of COVID-19 or providing alternative diagnosis.


Asunto(s)
COVID-19/diagnóstico por imagen , Servicio de Urgencia en Hospital , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad , Triaje
18.
iScience ; 23(9): 101529, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33083759

RESUMEN

Nuclear factor (NF)-κB controls the transcriptional response to inflammatory signals by translocating into the nucleus, but we lack a single-cell characterization of the resulting transcription dynamics. Here we show that upon tumor necrosis factor (TNF)-α transcription of NF-κB target genes is heterogeneous in individual cells but results in an average nascent transcription profile that is prompt (i.e., occurs almost immediately) and sharp (i.e., increases and decreases rapidly) compared with NF-κB nuclear localization. Using an NF-κB-controlled MS2 reporter we show that the single-cell nascent transcription is more heterogeneous than NF-κB translocation dynamics, with a fraction of synchronized "first responders" that shape the average transcriptional profile and are more prone to respond to multiple TNF-α stimulations. A mathematical model combining NF-κB-mediated gene activation and a gene refractory state is able to reproduce these features. Our work shows how the expression of target genes induced by transcriptional activators can be heterogeneous across single cells and yet time resolved on average.

19.
Sci Rep ; 10(1): 16906, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037285

RESUMEN

ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a ligand and of an efficient way to selectively activate the receptor. In this paper, we found that antibodies (Abs) targeting different epitopes on the ERBB2 extracellular domain foster the activation of ERBB2 homodimers, and surprisingly induce a unique cytostatic signaling cascade promoting an ERK-dependent ERBB2 Thr701 phosphorylation, leading to AKT de-phosphorylation, via PP2A Ser/Thr phosphatases. Furthermore, the immunophilin Cyclophilin A plays a crucial role in this pathway, acting as a negative modulator of AKT de-phosphorylation, possibly by competing with Ser/Thr phosphatases for binding to AKT. Altogether, our data show that Ab recognizing ERBB2 extracellular domain function as receptor agonists, promoting ERBB2 homodimer activation, leading to an anti-proliferative signaling. Thus, the ultimate outcome of ERBB2 activity might depend on the dimerization status: pro-oncogenic in the hetero-, and anti-oncogenic in the homo-dimeric form.


Asunto(s)
Citostáticos/metabolismo , Fosforilación/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-2/inmunología , Transducción de Señal/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Dimerización , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32491160

RESUMEN

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Grasos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Acil-CoA Deshidrogenasa de Cadena Larga/biosíntesis , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Regulación hacia Abajo , Ácidos Grasos/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Mutantes , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...