Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Front Neurosci ; 18: 1266664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356646

RESUMEN

Olfaction is understudied in neuroimaging research compared to other senses, but there is growing evidence of its therapeutic benefits on mood and well-being. Olfactory imagery can provide similar health benefits as olfactory interventions. Harnessing crossmodal visual-olfactory interactions can facilitate olfactory imagery. Understanding and employing these cross-modal interactions between visual and olfactory stimuli could aid in the research and applications of olfaction and olfactory imagery interventions for health and wellbeing. This review examines current knowledge, debates, and research on olfaction, olfactive imagery, and crossmodal visual-olfactory integration. A total of 56 papers, identified using the PRISMA method, were evaluated to identify key brain regions, research themes and methods used to determine the suitability of fNIRS as a tool for studying these topics. The review identified fNIRS-compatible protocols and brain regions within the fNIRS recording depth of approximately 1.5 cm associated with olfactory imagery and crossmodal visual-olfactory integration. Commonly cited regions include the orbitofrontal cortex, inferior frontal gyrus and dorsolateral prefrontal cortex. The findings of this review indicate that fNIRS would be a suitable tool for research into these processes. Additionally, fNIRS suitability for use in naturalistic settings may lead to the development of new research approaches with greater ecological validity compared to existing neuroimaging techniques.

3.
Biol Open ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180242

RESUMEN

Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.


Asunto(s)
Dióxido de Carbono , Hipercapnia , Humanos , Complejo IV de Transporte de Electrones , Consumo de Oxígeno , Encéfalo
4.
Sci Rep ; 13(1): 18850, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914844

RESUMEN

The simple act of watching another person can change a person's behaviour in subtle but important ways; the individual being watched is now capable of signalling to the watcher, and may use this opportunity to communicate to the watcher. Recent data shows that people will spontaneously imitate more when being watched. Here, we examine the neural and cognitive mechanisms of being watched during spontaneous social imitation in autistic and neurotypical adults using fNIRS brain imaging. Participants (n = 44) took part in a block-moving task where they were instructed only to copy the block sequence which people normally do using a straight low action trajectory. Here, the demonstrator sometimes used an atypical 'high' action trajectory, giving participants the opportunity to spontaneously copy the high trajectory even if this slowed their performance. The confederate who demonstrated each block sequence could watch the participant's actions or close her eyes, giving a factorial design with factors of trajectory (high/low) and watched (watched/unwatched). Throughout the task, brain signals were captured from bilateral temporal/parietal/occipital cortex using fNIRS. We found that all participants performed higher actions when being watched by the confederate than when not being watched, with no differences between autistic and neurotypical participants. The unwatched conditions were associated with higher activity of the right inferior parietal lobule in all participants and also engagement of left STS only in autistic participants. These findings are consistent with the claim that people engage different neural mechanisms when watched and unwatched and that participants with autism may engage additional brain mechanisms to match neurotypical behaviour and compensate for social difficulties. However, further studies will be needed to replicate these results in a larger sample of participants.


Asunto(s)
Trastorno Autístico , Humanos , Adulto , Femenino , Interacción Social , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Lóbulo Temporal
5.
Elife ; 122023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818944

RESUMEN

The specialised regional functionality of the mature human cortex partly emerges through experience-dependent specialisation during early development. Our existing understanding of functional specialisation in the infant brain is based on evidence from unitary imaging modalities and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemodynamic activation, giving an incomplete picture. We speculate that functional specialisation will be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orchestrated physiological response. To enable researchers to track this process through development, we develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), metabolic rate, and oxygenated blood supply (broadband near-infrared spectroscopy) in the awake infant. In 4- to 7-month-old infants, we use these new tools to show that social processing is accompanied by spatially and temporally specific increases in coupled activation in the temporal-parietal junction, a core hub region of the adult social brain. During non-social processing, coupled activation decreased in the same region, indicating specificity to social processing. Coupling was strongest with high-frequency brain activity (beta and gamma), consistent with the greater energetic requirements and more localised action of high-frequency brain activity. The development of simultaneous multimodal neural measures will enable future researchers to open new vistas in understanding functional specialisation of the brain.


Asunto(s)
Encéfalo , Neuroimagen , Adulto , Humanos , Lactante , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Electroencefalografía/métodos
6.
Pediatr Res ; 94(5): 1675-1683, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37308684

RESUMEN

BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT: This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.


Asunto(s)
Hipoxia-Isquemia Encefálica , Lactante , Humanos , Animales , Porcinos , Hipoxia-Isquemia Encefálica/terapia , Neuroprotección , Biomarcadores , Encéfalo/metabolismo , Animales Recién Nacidos
7.
Neurophotonics ; 10(2): 020401, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37034010

RESUMEN

Ilias Tachtsidis, professor of biomedical engineering, senior member of the Biomedical Optics Research Laboratory, and head of the Multi-Modal Spectroscopy Group at University College London (UCL), interviewed his colleague and mentor Clare Elwell, professor of medical physics at UCL and Vice Dean of Impact for UCL Engineering, about her pioneering work in fNIRS and brain imaging for global health.

8.
Sci Rep ; 13(1): 6445, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081065

RESUMEN

The retina has the greatest metabolic demand in the body particularly in dark adaptation when its sensitivity is enhanced. This requires elevated level of perfusion to sustain mitochondrial activity. However, mitochondrial performance declines with age leading to reduced adaptive ability. We assessed human retina metabolism in vivo using broad band near-infrared spectroscopy (bNIRS), which records colour changes in mitochondria and blood as retinal metabolism shifts in response to changes in environmental luminance. We demonstrate a significant sustained rise in mitochondrial oxidative metabolism in the first 3 min of darkness in subjects under 50 years old. This was not seen in those over 50 years. Choroidal oxygenation declines in < 50 s as mitochondrial metabolism increases, but gradually rises in the > 50 s. Significant group differences in blood oxygenation are apparent in the first 6 min, consistent with mitochondrial demand leading hemodynamic changes. A greater coupling between mitochondrial oxidative metabolism with hemodynamics is revealed in subjects older than 50, possibly due to reduced capacity in the older retina. Rapid in vivo assessment of retinal metabolism with bNIRS provides a route to understanding fundamental physiology and early identification of retinal disease before pathology is established.


Asunto(s)
Retina , Enfermedades de la Retina , Humanos , Persona de Mediana Edad , Retina/metabolismo , Adaptación a la Oscuridad , Enfermedades de la Retina/metabolismo , Mitocondrias/metabolismo , Respiración
9.
Front Pediatr ; 10: 1008539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268041

RESUMEN

Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.

10.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36052058

RESUMEN

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

11.
J Cogn Neurosci ; 34(12): 2215-2236, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122354

RESUMEN

Ecologically valid research and wearable brain imaging are increasingly important in cognitive neuroscience as they enable researchers to measure neural mechanisms of complex social behaviors in real-world environments. This article presents a proof of principle study that aims to push the limits of what wearable brain imaging can capture and find new ways to explore the neuroscience of acting. Specifically, we focus on how to build an interdisciplinary paradigm to investigate the effects of taking on a role on an actor's sense of self and present methods to quantify interpersonal coordination at different levels (brain, physiology, behavior) as pairs of actors rehearse an extract of a play prepared for live performance. Participants were six actors from Flute Theatre, rehearsing an extract from Shakespeare's A Midsummer Night's Dream. Sense of self was measured in terms of the response of the pFC to hearing one's own name (compared with another person's name). Interpersonal coordination was measured using wavelet coherence analysis of brain signals, heartbeats, breathing, and behavior. Findings show that it is possible to capture an actor's pFC response to their own name and that this response is suppressed when an actor rehearses a segment of the play. In addition, we found that it is possible to measure interpersonal synchrony across three modalities simultaneously. These methods open the way to new studies that can use wearable neuroimaging and hyperscanning to understand the neuroscience of social interaction and the complex social-emotional processes involved in theatrical training and performing theater.


Asunto(s)
Relaciones Interpersonales , Dispositivos Electrónicos Vestibles , Humanos , Espectroscopía Infrarroja Corta , Conducta Social , Mapeo Encefálico
12.
Cells ; 11(16)2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36010678

RESUMEN

BACKGROUND: Neonatal seizures remain a significant cause of morbidity and mortality worldwide. The past decade has resulted in substantial progress in seizure detection and understanding the impact seizures have on the developing brain. Optical monitoring such as cerebral near-infrared spectroscopy (NIRS) and broadband NIRS can provide non-invasive continuous real-time monitoring of the changes in brain metabolism and haemodynamics. AIM: To perform a systematic review of optical biomarkers to identify changes in cerebral haemodynamics and metabolism during the pre-ictal, ictal, and post-ictal phases of neonatal seizures. METHOD: A systematic search was performed in eight databases. The search combined the three broad categories: (neonates) AND (NIRS) AND (seizures) using the stepwise approach following PRISMA guidance. RESULTS: Fifteen papers described the haemodynamic and/or metabolic changes observed with NIRS during neonatal seizures. No randomised controlled trials were identified during the search. Studies reported various changes occurring in the pre-ictal, ictal, and post-ictal phases of seizures. CONCLUSION: Clear changes in cerebral haemodynamics and metabolism were noted during the pre-ictal, ictal, and post-ictal phases of seizures in neonates. Further studies are necessary to determine whether NIRS-based methods can be used at the cot-side to provide clear pathophysiological data in real-time during neonatal seizures.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Encéfalo/metabolismo , Epilepsia/metabolismo , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Convulsiones/diagnóstico , Convulsiones/metabolismo , Espectroscopía Infrarroja Corta/métodos
13.
Neurophotonics ; 9(3): 030801, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35832785

RESUMEN

In this Outlook paper, we explain why an accurate physiological interpretation of functional near-infrared spectroscopy (fNIRS) neuroimaging signals is facilitated when systemic physiological activity (e.g., cardiorespiratory and autonomic activity) is measured simultaneously by employing systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). The rationale for SPA-fNIRS is twofold: (i) SPA-fNIRS enables a more complete interpretation and understanding of the fNIRS signals measured at the head since they contain components originating from neurovascular coupling and from systemic physiological sources. The systemic physiology signals measured with SPA-fNIRS can be used for regressing out physiological confounding components in fNIRS signals. Misinterpretations can thus be minimized. (ii) SPA-fNIRS enables to study the embodied brain by linking the brain with the physiological state of the entire body, allowing novel insights into their complex interplay. We envisage the SPA-fNIRS approach will become increasingly important in the future.

14.
Transl Vis Sci Technol ; 11(7): 2, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802369

RESUMEN

Purpose: In this study, we used broadband near-infrared spectroscopy, a non-invasive optical technique, to investigate in real time the possible role of neuroglobin in retinal hemodynamics and metabolism. Methods: Retinae of 12 C57 mice (seven young and five old) and seven young neuroglobin knockouts (Ngb-KOs) were exposed to light from a low-power halogen source, and the back-reflected light was used to calculate changes in the concentration of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and oxidized cytochrome c oxidase (oxCCO). Results: The degree of change in the near-infrared spectroscopy signals associated with HHb, HbO2, and oxCCO was significantly greater in young C57 mice compared to the old C57 mice (P < 0.05) and the Ngb-KO model (P < 0.005). Conclusions: Our results reveal a possible role of Ngb in regulating retinal function, as its absence in the retinae of a knockout mouse model led to suppressed signals that are associated with hemodynamics and oxidative metabolism. Translational Relevance: Near-infrared spectroscopy enabled the non-invasive detection of characteristic signals that differentiate between the retina of a neuroglobin knockout mouse model and that of a wild-type model. Further work is needed to evaluate the source of the signal differences and how these differences relate to the presence or absence of neuroglobin in the ganglion, bipolar, or amacrine cells of the retina.


Asunto(s)
Neuroglobina , Oxihemoglobinas , Retina , Animales , Hemodinámica , Ratones , Neuroglobina/metabolismo , Oxihemoglobinas/metabolismo , Retina/metabolismo
15.
Neuroimage ; 258: 119392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714887

RESUMEN

Rostral PFC (area 10) activation is common during prospective memory (PM) tasks. But it is not clear what mental processes these activations index. Three candidate explanations from cognitive neuroscience theory are: (i) monitoring of the environment; (ii) spontaneous intention retrieval; (iii) a combination of the two. These explanations make different predictions about the temporal and spatial patterns of activation that would be seen in rostral PFC in naturalistic settings. Accordingly, we plotted functional events in PFC using portable fNIRS while people were carrying out a PM task outside the lab and responding to cues when they were encountered, to decide between these explanations. Nineteen people were asked to walk around a street in London, U.K. and perform various tasks while also remembering to respond to prospective memory (PM) cues when they detected them. The prospective memory cues could be either social (involving greeting a person) or non-social (interacting with a parking meter) in nature. There were also a number of contrast conditions which allowed us to determine activation specifically related to the prospective memory components of the tasks. We found that maintaining both social and non-social intentions was associated with widespread activation within medial and right hemisphere rostral prefrontal cortex (BA 10), in agreement with numerous previous lab-based fMRI studies of prospective memory. In addition, increased activation was found within lateral prefrontal cortex (BA 45 and 46) when people were maintaining a social intention compared to a non-social one. The data were then subjected to a GLM-based method for automatic identification of functional events (AIDE), and the position of the participants at the time of the activation events were located on a map of the physical space. The results showed that the spatial and temporal distribution of these events was not random, but aggregated around areas in which the participants appeared to retrieve their future intentions (i.e., where they saw intentional cues), as well as where they executed them. Functional events were detected most frequently in BA 10 during the PM conditions compared to other regions and tasks. Mobile fNIRS can be used to measure higher cognitive functions of the prefrontal cortex in "real world" situations outside the laboratory in freely ambulant individuals. The addition of a "brain-first" approach to the data permits the experimenter to determine not only when haemodynamic changes occur, but also where the participant was when it happened. This can be extremely valuable when trying to link brain and cognition.


Asunto(s)
Memoria Episódica , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Caminata
16.
J Biomed Opt ; 27(7)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35701869

RESUMEN

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Asunto(s)
Laboratorios , Óptica y Fotónica , Fantasmas de Imagen , Reproducibilidad de los Resultados , Análisis Espectral
17.
Neurophotonics ; 9(2): 025001, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35599691

RESUMEN

Significance: There is a longstanding recommendation within the field of fNIRS to use oxygenated ( HbO 2 ) and deoxygenated (HHb) hemoglobin when analyzing and interpreting results. Despite this, many fNIRS studies do focus on HbO 2 only. Previous work has shown that HbO 2 on its own is susceptible to systemic interference and results may mostly reflect that rather than functional activation. Studies using both HbO 2 and HHb to draw their conclusions do so with varying methods and can lead to discrepancies between studies. The combination of HbO 2 and HHb has been recommended as a method to utilize both signals in analysis. Aim: We present the development of the hemodynamic phase correlation (HPC) signal to combine HbO 2 and HHb as recommended to utilize both signals in the analysis. We use synthetic and experimental data to evaluate how the HPC and current signals used for fNIRS analysis compare. Approach: About 18 synthetic datasets were formed using resting-state fNIRS data acquired from 16 channels over the frontal lobe. To simulate fNIRS data for a block-design task, we superimposed a synthetic task-related hemodynamic response to the resting state data. This data was used to develop an HPC-general linear model (GLM) framework. Experiments were conducted to investigate the performance of each signal at different SNR and to investigate the effect of false positives on the data. Performance was based on each signal's mean T -value across channels. Experimental data recorded from 128 participants across 134 channels during a finger-tapping task were used to investigate the performance of multiple signals [ HbO 2 , HHb, HbT, HbD, correlation-based signal improvement (CBSI), and HPC] on real data. Signal performance was evaluated on its ability to localize activation to a specific region of interest. Results: Results from varying the SNR show that the HPC signal has the highest performance for high SNRs. The CBSI performed the best for medium-low SNR. The next analysis evaluated how false positives affect the signals. The analyses evaluating the effect of false positives showed that the HPC and CBSI signals reflect the effect of false positives on HbO 2 and HHb. The analysis of real experimental data revealed that the HPC and HHb signals provide localization to the primary motor cortex with the highest accuracy. Conclusions: We developed a new hemodynamic signal (HPC) with the potential to overcome the current limitations of using HbO 2 and HHb separately. Our results suggest that the HPC signal provides comparable accuracy to HHb to localize functional activation while at the same time being more robust against false positives.

18.
Metabolites ; 12(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323703

RESUMEN

Epileptic seizures are transiently occurring symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Previous functional near-infrared spectroscopy (fNIRS) studies during seizures have focused in only monitoring the brain oxygenation and haemodynamic changes. However, few tools are available to measure actual cellular metabolism during seizures, especially at the bedside. Here we use an in-house developed multichannel broadband NIRS (or bNIRS) system, that, alongside the changes in oxy-, deoxy- haemoglobin concentration (HbO2, HHb), also quantifies the changes in oxidised cytochrome-c-oxidase Δ(oxCCO), a marker of cellular oxygen metabolism, simultaneously over 16 different brain locations. We used bNIRS to measure metabolic activity alongside brain tissue haemodynamics/oxygenation during 17 epileptic seizures at the bedside of a 3-year-old girl with seizures due to an extensive malformation of cortical development in the left posterior quadrant. Simultaneously Video-EEG data was recorded from 12 channels. Whilst we did observe the expected increase in brain tissue oxygenation (HbD) during seizures, it was almost diminished in the area of the focal cortical dysplasia. Furthermore, in the area of seizure origination (epileptic focus) ΔoxCCO decreased significantly at the time of seizure generalization when compared to the mean change in all other channels. We hypothesize that this indicates an incapacity to sustain and increase brain tissue metabolism during seizures in the region of the epileptic focus.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35144035

RESUMEN

BACKGROUND: Conventional paradigms in clinical neuroscience tend to be constrained in terms of ecological validity, raising several challenges to studying the mechanisms mediating treatments and outcomes in clinical settings. Addressing these issues requires real-world neuroimaging techniques that are capable of continuously collecting data during free-flowing interpersonal interactions and that allow for experimental designs that are representative of the clinical situations in which they occur. METHODS: In this work, we developed a paradigm that fractionates the major components of human-to-human verbal interactions occurring in clinical situations and used functional near-infrared spectroscopy to assess the brain systems underlying clinician-client discourse (N = 30). RESULTS: Cross-brain neural coupling between people was significantly greater during clinical interactions compared with everyday life verbal communication, particularly between the prefrontal cortex (e.g., inferior frontal gyrus) and inferior parietal lobule (e.g., supramarginal gyrus). The clinical tasks revealed extensive increases in activity across the prefrontal cortex, especially in the rostral prefrontal cortex (area 10), during periods in which participants were required to silently reason about the dysfunctional cognitions of the other person. CONCLUSIONS: This work demonstrates a novel experimental approach to investigating the neural underpinnings of interpersonal interactions that typically occur in clinical settings, and its findings support the idea that particular prefrontal systems might be critical to cultivating mental health.


Asunto(s)
Salud Mental , Neuroimagen , Encéfalo , Humanos , Neuroimagen/métodos , Lóbulo Parietal , Corteza Prefrontal/diagnóstico por imagen
20.
J Biophotonics ; 15(4): e202100283, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020273

RESUMEN

Blue light (~400-470 nm) is considered potentially detrimental to the retina but is present in natural environmental light. Mitochondrial density is highest in the retina, and they exhibit a prominent optical absorption around 420 nm arising from the Soret band of their porphyrins, including in cytochrome-c-oxidase in their respiratory chain. We examine the impact of continuous 420 nm at environmental energy levels on retinal mitochondrial metabolism and haemodynamics in vivo in real time using broadband near-infrared spectroscopy. One hour environmental exposure to 420 nm induces significant metabolic instability in retinal mitochondria and blood signals, which continues for up to 1 h post blue exposure. Porphyrins are important in mitochondrial adenosine triphosphate (ATP) production and cytochrome-c-oxidase is a key part of the electron transport chain through which this is achieved. Hence, environmental 420 nm likely restricts respiration and ATP production that may impact on retinal function.


Asunto(s)
Mitocondrias , Espectroscopía Infrarroja Corta , Adenosina Trifosfato/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hemodinámica , Luz , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...