Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Res Notes ; 16(1): 248, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784104

RESUMEN

OBJECTIVE: Black poplar (Populus nigra L.) is a species native to Eurasia with a wide distribution area. It is an ecologically important species from riparian ecosystems, that is used as a parent of interspecific (P. deltoides x P. nigra) cultivated poplar hybrids. Variant detection from transcriptomics sequences of 241 P. nigra individuals, sampled in natural populations from 11 river catchments (in four European countries) is described here. These data provide new valuable resources for population structure analysis, population genomics and genome-wide association studies. DATA DESCRIPTION: We generated transcriptomics data from a mixture of young differentiating xylem and cambium tissues of 480 Populus nigra trees sampled in a common garden experiment located at Orléans (France), corresponding to 241 genotypes (2 clonal replicates per genotype, at maximum) by using RNAseq technology. We launched on the resulting sequences an in-silico pipeline that allowed us to obtain 878,957 biallelic polymorphisms without missing data. More than 99% of these positions are annotated and 98.8% are located on the 19 chromosomes of the P. trichocarpa reference genome. The raw RNAseq sequences are available at the NCBI Sequence Read Archive SPR188754 and the variant dataset at the Recherche Data Gouv repository under https://doi.org/10.15454/8DQXK5 .


Asunto(s)
Populus , Humanos , Populus/genética , Ecosistema , Estudio de Asociación del Genoma Completo , Genotipo , Francia
2.
Plant Commun ; 4(5): 100676, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37644724

RESUMEN

Plant defense responses involve several biological processes that allow plants to fight against pathogenic attacks. How these different processes are orchestrated within organs and depend on specific cell types is poorly known. Here, using single-cell RNA sequencing (scRNA-seq) technology on three independent biological replicates, we identified several cell populations representing the core transcriptional responses of wild-type Arabidopsis leaves inoculated with the bacterial pathogen Pseudomonas syringae DC3000. Among these populations, we retrieved major cell types of the leaves (mesophyll, guard, epidermal, companion, and vascular S cells) with which we could associate characteristic transcriptional reprogramming and regulators, thereby specifying different cell-type responses to the pathogen. Further analyses of transcriptional dynamics, on the basis of inference of cell trajectories, indicated that the different cell types, in addition to their characteristic defense responses, can also share similar modules of gene reprogramming, uncovering a ubiquitous antagonism between immune and susceptible processes. Moreover, it appears that the defense responses of vascular S cells, epidermal cells, and mesophyll cells can evolve along two separate paths, one converging toward an identical cell fate, characterized mostly by lignification and detoxification functions. As this divergence does not correspond to the differentiation between immune and susceptible cells, we speculate that this might reflect the discrimination between cell-autonomous and non-cell-autonomous responses. Altogether our data provide an upgraded framework to describe, explore, and explain the specialization and the coordination of plant cell responses upon pathogenic challenge.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Análisis de Expresión Génica de una Sola Célula , Hojas de la Planta/genética , Diferenciación Celular , Células Vegetales
3.
Front Plant Sci ; 13: 1055196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531353

RESUMEN

TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.

4.
Plant Physiol ; 190(3): 1978-1996, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35900211

RESUMEN

Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Flagelina/farmacología , Flagelina/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pseudomonas syringae/fisiología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas
5.
iScience ; 25(7): 104683, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35856019

RESUMEN

Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.

6.
Curr Biol ; 32(17): 3838-3846.e5, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35841890

RESUMEN

A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form.1 Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance,2,3 identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.4-10 A capacity for lateral branching evolved by convergence in the gametophytic shoot of mosses and primed its diversification;11 however, polar auxin transport is relatively unimportant in this developmental process,12 the contribution of auxin biosynthesis genes has not been assessed, and more generally, the extent of conservation in apical dominance regulation within the land plants remains largely unknown. To fill this knowledge gap, we sought to identify genetic determinants of apical dominance in the moss Physcomitrium patens. Here, we show that leafy shoot apex decapitation releases apical dominance through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. We pinpoint a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in the main and lateral shoot apices and show that they are essential for coordinating branch initiation and outgrowth. Our results demonstrate that local auxin biosynthesis acts as a pivotal regulator of apical dominance in moss and constitutes a shared mechanism underpinning shoot architecture control in land plants.


Asunto(s)
Briófitas , Bryopsida , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/genética
7.
Proc Natl Acad Sci U S A ; 119(27): e2001290119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759655

RESUMEN

The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN-Topoisomerasas de Tipo II , Eucromatina , Heterocromatina , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Elementos Transponibles de ADN , Eucromatina/genética , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo
8.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575098

RESUMEN

Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
9.
Plant Physiol ; 189(3): 1587-1607, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35471237

RESUMEN

Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.


Asunto(s)
Medicago truncatula , Simbiosis , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Sci Rep ; 12(1): 6947, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484296

RESUMEN

Phosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kß1 and ß2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kß1ß2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation. The pi4kß1ß2 root transcriptome displayed some similarities to a wild type plant response to auxin. Yet, not all the genes displayed such a constitutive auxin-like response. Besides, most assessed genes did not respond to exogenous auxin. This is consistent with data with the transcriptional reporter DR5-GUS. The content of bioactive auxin in the pi4kß1ß2 roots was similar to that in wild-type ones. Yet, an enhanced auxin-conjugating activity was detected and the auxin level reporter DII-VENUS did not respond to exogenous auxin in pi4kß1ß2 mutant. The mutant exhibited altered subcellular trafficking behavior including the trapping of PIN-FORMED 2 protein in rapidly moving vesicles. Bigger and less fragmented vacuoles were observed in pi4kß1ß2 roots when compared to the wild type. Furthermore, the actin filament web of the pi4kß1ß2 double mutant was less dense than in wild-type seedling roots, and less prone to rebuilding after treatment with latrunculin B. A mechanistic model is proposed in which an altered PI4K activity leads to actin filament disorganization, changes in vesicle trafficking, and altered auxin homeostasis and response resulting in a pleiotropic root phenotypes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Fosfatidilinositol , Fosfatidilinositoles/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
11.
Front Plant Sci ; 12: 660803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149759

RESUMEN

Even though petals are homoplastic structures, their identity consistently involves genes of the APETALA3 (AP3) lineage. However, the extent to which the networks downstream of AP3 are conserved in species with petals of different evolutionary origins is unknown. In Ranunculaceae, the specificity of the AP3-III lineage offers a great opportunity to identify the petal gene regulatory network in a comparative framework. Using a transcriptomic approach, we investigated putative target genes of the AP3-III ortholog NdAP3-3 in Nigella damascena at early developmental stages when petal identity is determined, and we compared our data with that from selected eudicot species. We generated a de novo reference transcriptome to carry out a differential gene expression analysis between the wild-type and mutant NdAP3-3 genotypes differing by the presence vs. absence of petals at early stages of floral development. Among the 1,620 genes that were significantly differentially expressed between the two genotypes, functional annotation suggested a large involvement of nuclear activities, including regulation of transcription, and enrichment in processes linked to cell proliferation. Comparing with Arabidopsis data, we found that highly conserved genes between the two species are enriched in homologs of direct targets of the AtAP3 protein. Integrating AP3-3 binding site data from another Ranunculaceae species, Aquilegia coerulea, allowed us to identify a set of 18 putative target genes that were conserved between the three species. Our results suggest that, despite the independent evolutionary origin of petals in core eudicots and Ranunculaceae, a small conserved set of genes determines petal identity and early development in these taxa.

12.
New Phytol ; 232(1): 80-97, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34128549

RESUMEN

Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.


Asunto(s)
Populus , Metilación de ADN/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Meristema , Populus/genética , Interferencia de ARN
13.
New Phytol ; 229(2): 994-1006, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583438

RESUMEN

The Anthropocene epoch is associated with the spreading of metals in the environment increasing oxidative and genotoxic stress on organisms. Interestingly, c. 520 plant species growing on metalliferous soils acquired the capacity to accumulate and tolerate a tremendous amount of nickel in their shoots. The wide phylogenetic distribution of these species suggests that nickel hyperaccumulation evolved multiple times independently. However, the exact nature of these mechanisms and whether they have been recruited convergently in distant species is not known. To address these questions, we have developed a cross-species RNA-Seq approach combining differential gene expression analysis and cluster of orthologous group annotation to identify genes linked to nickel hyperaccumulation in distant plant families. Our analysis reveals candidate orthologous genes encoding convergent function involved in nickel hyperaccumulation, including the biosynthesis of specialized metabolites and cell wall organization. Our data also point out that the high expression of IREG/Ferroportin transporters recurrently emerged as a mechanism involved in nickel hyperaccumulation in plants. We further provide genetic evidence in the hyperaccumulator Noccaea caerulescens for the role of the NcIREG2 transporter in nickel sequestration in vacuoles. Our results provide molecular tools to better understand the mechanisms of nickel hyperaccumulation and study their evolution in plants.


Asunto(s)
Brassicaceae , Níquel , Brassicaceae/genética , Filogenia , RNA-Seq , Suelo
14.
Mol Plant Pathol ; 21(11): 1436-1450, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939948

RESUMEN

Plant nitrogen (N) fertilization is known to affect disease; however, the underlying mechanisms remain mostly unknown. We investigated the impact of N supply on the Arabidopsis thaliana-Botrytis cinerea interaction. A. thaliana plants grown in low nitrate were more tolerant to all wild-type B. cinerea strains tested. We determined leaf nitrate concentrations and showed that they had a limited impact on B. cinerea growth in vitro. For the first time, we performed a dual RNA-Seq of infected leaves of plants grown with different nitrate concentrations. Transcriptome analysis showed that plant and fungal transcriptomes were marginally affected by plant nitrate supply. Indeed, only a limited set of plant (182) and fungal (22) genes displayed expression profiles altered by nitrate supply. The expression of selected genes was confirmed by quantitative reverse transcription PCR at 6 hr postinfection (hpi) and analysed at a later time point (24 hpi). We selected three of the 22 B. cinerea genes identified for further analysis. B. cinerea mutants affected in these genes were less aggressive than the wild-type strain. We also showed that plants grown in ammonium were more tolerant to B. cinerea. Furthermore, expression of the selected B. cinerea genes in planta was altered when plants were grown with ammonium instead of nitrate, demonstrating an impact of the nature of N supplied to plants on the interaction. Identification of B. cinerea genes expressed differentially in planta according to plant N supply unveils two novel virulence functions required for full virulence in A. thaliana: a secondary metabolite (SM) and an acidic protease (AP).


Asunto(s)
Compuestos de Amonio/administración & dosificación , Arabidopsis/microbiología , Botrytis/patogenicidad , Nitratos/administración & dosificación , Nitrógeno/administración & dosificación , Enfermedades de las Plantas/microbiología , Transcriptoma , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Botrytis/genética , Botrytis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Mutación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Virulencia , Factores de Virulencia/genética
15.
BMC Genomics ; 21(1): 416, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571208

RESUMEN

BACKGROUND: Recent literature on the differential role of genes within networks distinguishes core from peripheral genes. If previous works have shown contrasting features between them, whether such categorization matters for phenotype prediction remains to be studied. RESULTS: We measured 17 phenotypic traits for 241 cloned genotypes from a Populus nigra collection, covering growth, phenology, chemical and physical properties. We also sequenced RNA for each genotype and built co-expression networks to define core and peripheral genes. We found that cores were more differentiated between populations than peripherals while being less variable, suggesting that they have been constrained through potentially divergent selection. We also showed that while cores were overrepresented in a subset of genes statistically selected for their capacity to predict the phenotypes (by Boruta algorithm), they did not systematically predict better than peripherals or even random genes. CONCLUSION: Our work is the first attempt to assess the importance of co-expression network connectivity in phenotype prediction. While highly connected core genes appear to be important, they do not bear enough information to systematically predict better quantitative traits than other gene sets.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Populus/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Aprendizaje Automático , Fenotipo , Proteínas de Plantas/genética , Populus/genética , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN
16.
Cells ; 8(6)2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200566

RESUMEN

We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a "buffering" mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleus.


Asunto(s)
Mitocondrias/genética , Desarrollo de la Planta/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Núcleo Celular/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , ARN Catalítico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Regulación hacia Arriba/genética
17.
BMC Plant Biol ; 19(1): 135, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971226

RESUMEN

BACKGROUND: The floral transition is a complex developmental event, fine-tuned by various environmental and endogenous cues to ensure the success of offspring production. Leaves are key organs in sensing floral inductive signals, such as a change in light regime, and in the production of the mobile florigen. CONSTANS and FLOWERING LOCUS T are major players in leaves in response to photoperiod. Morphological and molecular events during the floral transition have been intensively studied in the shoot apical meristem. To better understand the concomitant processes in leaves, which are less described, we investigated the nuclear changes in fully developed leaves during the time course of the floral transition. RESULTS: We highlighted new putative regulatory candidates of flowering in leaves. We observed differential expression profiles of genes related to cellular, hormonal and metabolic actions, but also of genes encoding long non-coding RNAs and new natural antisense transcripts. In addition, we detected a significant increase in ploidy level during the floral transition, indicating endoreduplication. CONCLUSIONS: Our data indicate that differentiated mature leaves, possess physiological plasticity and undergo extensive nuclear reprogramming during the floral transition. The dynamic events point at functionally related networks of transcription factors and novel regulatory motifs, but also complex hormonal and metabolic changes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reprogramación Celular/genética , Endorreduplicación/genética , Florigena/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Meristema/efectos de la radiación , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Physiol ; 180(2): 1198-1218, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948555

RESUMEN

Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Genómica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Ciclo Celular , Desecación , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación/genética , Oxidación-Reducción , Fotosíntesis , Latencia en las Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal/genética , Transcriptoma/genética
19.
PLoS Genet ; 15(4): e1007847, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998684

RESUMEN

The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an "auto-immune" type interaction.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/fisiología , Desarrollo Embrionario , Desarrollo de la Planta , Transducción de Señal , Estrés Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario/genética , Endospermo/embriología , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/genética , Estrés Fisiológico/genética , Transgenes
20.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841651

RESUMEN

Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a cold night. Our objectives were to identify modifications in the transcript levels after stress and during recovery. Consequently, our results confirmed some mechanisms known in grapes or other plants in response to cold stress, notably, (1) the pivotal role of calcium/calmodulin-mediated signaling; (2) the over-expression of sugar transporters and some genes involved in plant defense (especially in carbon metabolism), and (3) the down-regulation of genes encoding galactinol synthase (GOLS), pectate lyases, or polygalacturonases. We also identified some mechanisms not yet known to be involved in the response to cold stress, i.e., (1) the up-regulation of genes encoding G-type lectin S-receptor-like serine threonine-protein kinase, pathogen recognition receptor (PRR5), or heat-shock factors among others; (2) the down-regulation of Myeloblastosis (MYB)-related transcription factors and the Constans-like zinc finger family; and (3) the down-regulation of some genes encoding Pathogen-Related (PR)-proteins. Taken together, our results revealed interesting features and potentially valuable traits associated with stress responses in the grapevine flower. From a long-term perspective, our study provides useful starting points for future investigation.


Asunto(s)
Respuesta al Choque por Frío , Transcriptoma , Vitis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...