Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Curr Oncol ; 31(4): 1831-1838, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668041

RESUMEN

Molecular analysis of the growing teratoma syndrome has not been extensively studied. Here, we report a 14-year-old boy with a growing mass during treatment for a mixed germ cell tumor of the pineal region. Tumor markers were negative; thus, growing teratoma syndrome was suspected. A radical resection via the occipital transtentorial approach was performed, and histopathological examination revealed a teratoma with malignant features. Methylation classifier analysis confirmed the diagnosis of teratoma, and DMRT1 loss and 12p gain were identified by copy number variation analysis, potentially elucidating the cause of growth and malignant transformation of the teratoma. The patient remains in remission after intense chemoradiation treatment as a high-risk germ cell tumor.


Asunto(s)
Teratoma , Humanos , Masculino , Teratoma/terapia , Teratoma/patología , Adolescente , Neoplasias Encefálicas/terapia , Terapia Combinada
2.
EJNMMI Radiopharm Chem ; 9(1): 19, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436869

RESUMEN

BACKGROUND: Heat shock proteins (HSPs) are present throughout the brain. They function as molecular chaperones, meaning they help with the folding and unfolding of large protein complexes. These chaperones are vital in the development of neuropathological conditions such as Alzheimer's disease and Lewy body disease, with HSP90, a specific subtype of HSP, playing a key role. Many studies have shown that drugs that inhibit HSP90 activity have beneficial effects in the neurodegenerative diseases. Therefore, HSP90 PET imaging ligand can be used effectively to study HSP90 in neurodegenerative diseases. Among four HSP90 isoforms, two cytosolic isoforms (HSP90α and HSP90ß) thought to be involved in the structural homeostasis of the proteins related to the neurodegenerative diseases. Currently, no useful PET imaging ligands selectively targeting the two cytosolic isoforms of HSP90 have been available yet. RESULTS: In this study, we developed a novel positron emission tomography (PET) imaging ligand, [11C]BIIB021, by 11C-radiolabeling (a positron emitter with a half-life of 20.4 min) 6-Chloro-9-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]-9H-purin-2-amine (BIIB021), an inhibitor with a high affinity for and selectivity to HSP90α and HSP90ß. [11C]BIIB021 was synthesized with a high yield, molar activity and radiochemical purity. [11C]BIIB021 showed a high binding affinity for rat brain homogenate as well as human recombinant HSP90α and HSP90ß proteins. Radioactivity was well detected in the rat brain (SUV 1.4). It showed clear specific binding in PET imaging of healthy rats and autoradiography of healthy rat and human brain sections. Radiometabolite was detected in the brain, however, total distribution volume was well quantified using dual-input graphical model. Inhibition of p-glycoprotein increased brain radioactivity concentrations. However, total distribution volume values with and without p-glycoprotein inhibition were nearly the same. CONCLUSIONS: We have developed a new PET imaging agent, [11C]BIIB021, specifically targeting HSP90α/ß. We have been successful in synthesizing [11C]BIIB021 and in vitro and in vivo imaging HSP90α/ß. However, the quantification of HSP90α/ß is complicated by the presence of radiometabolites in the brain and the potential to be a substrate for p-glycoprotein. Further efforts are needed to develop radioligand suitable for imaging of HSP90α/ß.

4.
J Neurooncol ; 166(2): 273-282, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227143

RESUMEN

PURPOSE: Liquid biopsy of cyst fluid in brain tumors has not been extensively studied to date. The present study was performed to see whether diagnostic genetic alterations found in brain tumor tissue DNA could also be detected in cell-free DNA (cfDNA) of cyst fluid in cystic brain tumors. METHODS: Cyst fluid was obtained from 22 patients undergoing surgery for a cystic brain tumor with confirmed genetic alterations in tumor DNA. Pathological diagnoses based on WHO 2021 classification and diagnostic alterations in the tumor DNA, such as IDH1 R132H and TERT promoter mutation for oligodendrogliomas, were detected by Sanger sequencing. The same alterations were analyzed by both droplet digital PCR (ddPCR) and Sanger sequencing in cyst fluid cfDNA. Additionally, multiplex ligation-dependent probe amplification (MLPA) assays were performed to assess 1p/19q status, presence of CDKN2A loss, PTEN loss and EGFR amplification, to assess whether differentiating between astrocytomas and oligodendrogliomas and grading is possible from cyst fluid cfDNA. RESULTS: Twenty-five genetic alterations were found in 22 tumor samples. All (100%) alterations were detected in cyst fluid cfDNA by ddPCR. Twenty of the 25 (80%) alterations were also detected by Sanger sequencing of cyst fluid cfDNA. Variant allele frequency (VAF) in cyst fluid cfDNA was comparable to that of tumor DNA (R = 0.62, Pearson's correlation). MLPA was feasible in 11 out of 17 (65%) diffuse gliomas, with close correlation of results between tumor DNA and cyst fluid cfDNA. CONCLUSION: Cell-free DNA obtained from cyst fluid in cystic brain tumors is a reliable alternative to tumor DNA when diagnosing brain tumors.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Oligodendroglioma , Humanos , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Oligodendroglioma/patología , Líquido Quístico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación , Reacción en Cadena de la Polimerasa Multiplex , ADN
5.
Rinsho Shinkeigaku ; 63(10): 650-655, 2023 Oct 25.
Artículo en Japonés | MEDLINE | ID: mdl-37779024

RESUMEN

We report a 73-year-old woman who started developing recurrent transient aphasia at the age of 66 years. During the attacks, she was aware she could not understand what was being said and both her spoken and written speech were meaningless. The attacks usually lasted for a few days, following which she could explain what had happened. Anti-epileptics did not improve her symptoms. She also noticed tremor of her right hand and gait disturbance at the age of 71 years. The recurrent transient aphasia was followed by drop attacks. At the time of her admission to our hospital, she showed paraplegia, phonological paraphasia, and difficulty in understanding complex sentences. Her language disturbance resembled a logopenic variant of primary progressive aphasia. However, the symptoms fluctuated for a few days and subsequently improved. Electroencephalography showed no abnormalities. Gadolinium-enhanced brain and spinal MRI showed diffuse leptomeningeal enhancement over the surface of the spinal cord, brain stem, and cerebrum on T1-weighed imaging. Surgical biopsy of a varicose vein in the subarachnoid space at the level of the Th11 spinal cord was performed. Pathological evaluation of the biopsied specimens revealed TTR-immunolabeled amyloid deposits in the subarachnoid vessel walls and on the arachnoid membrane. Gene analysis revealed c.265T>C, p.Y89H (Y69H) TTR mutation, which is known as one of the causative mutations of familial leptomeningeal amyloidosis. Leptomeningeal forms of transthyretin amyloidosis might present transient focal neurological episodes.


Asunto(s)
Neuropatías Amiloides Familiares , Afasia , Humanos , Femenino , Anciano , Prealbúmina/genética , Neuropatías Amiloides Familiares/complicaciones , Neuropatías Amiloides Familiares/diagnóstico , Neuropatías Amiloides Familiares/genética , Síncope
6.
Bioorg Med Chem Lett ; 90: 129327, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187253

RESUMEN

Positron emission tomography (PET) is a powerful imaging tool that enables early in vivo detection of Alzheimer's disease (AD). For this purpose, various PET ligands have been developed to image ß-amyloid and tau protein aggregates characteristically found in the brain of AD patients. In this study, we initiated to develop another type of PET ligand that targets protein kinase CK2 (formerly termed as casein kinase II), because its expression level is known to be altered in postmortem AD brains. CK2 is a serine/threonine protein kinase, an important component of cellular signaling pathways that control cellular degeneration. In AD, the CK2 level in the brain is thought to be elevated by its involvement in both phosphorylation of proteins such as tau and neuroinflammation. Decreased CK2 activity and expression levels lead to ß-amyloid accumulation. In addition, since CK2 also contributes to the phosphorylation of tau protein, the expression level and activity of CK2 is expected to undergo significant changes during the progression of AD pathology. Furthermore, CK2 could act as a potential target for modulating the inflammatory response in AD. Therefore, PET imaging targeting CK2 expressed in the brain could be a useful another imaging biomarker for AD. We synthesized and radiolabeled a CK2 inhibitor, [11C]GO289, in high yields from its precursor and [11C]methyl iodide under basic conditions. On autoradiography, [11C]GO289 specifically bound to CK2 in both rat and human brain sections. On baseline PET imaging, this ligand entered and rapidly washed out of the rat brain with its peak activity rather being small (SUV < 1.0). However, on blocking, there was no detectable CK2 specific binding signal. Thus, [11C]GO289 may be useful in vitro but not so in vivo in its current formulation. The lack of detectable specific binding signal in the latter may be due to a relatively high component of nonspecific binding signal in the overall rather weak PET signal, or it may also be related to the known fact that ATP can competitively binds to subunits of CK2, reducing its availability for this ligand. In the future, it will be necessary for PET imaging of CK2 to try out different non-ATP competitive formulations of CK2 inhibitor that can also provide significantly higher in vivo brain penetration.


Asunto(s)
Enfermedad de Alzheimer , Quinasa de la Caseína II , Humanos , Ratas , Animales , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo
9.
Nat Immunol ; 24(3): 545-557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658241

RESUMEN

The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-ß signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.


Asunto(s)
Demencia , Panencefalitis Esclerosante Subaguda , Animales , Humanos , Ratones , Encéfalo/metabolismo , Demencia/metabolismo , Demencia/patología , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Panencefalitis Esclerosante Subaguda/metabolismo , Panencefalitis Esclerosante Subaguda/patología
11.
Acta Neurochir (Wien) ; 165(1): 265-269, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35934751

RESUMEN

Epileptic seizure is the common symptom associated with lipomas in the Sylvian fissure (Sylvian lipomas). Removal of these lipomas carries risks of hemorrhage and brain damage. We report a surgical strategy of not removing the lipoma in a case of intractable temporal lobe epilepsy associated with Sylvian lipoma. We performed anterior temporal lobectomy with preservation of the pia mater of the Sylvian fissure and achieved seizure freedom. Focal cortical dysplasia type 1 of the epileptic neocortex adjacent to the Sylvian lipoma was pathologically diagnosed. We recommend our surgical procedure in similar cases to avoid complications and achieve adequate seizure control.


Asunto(s)
Neoplasias Encefálicas , Epilepsia del Lóbulo Temporal , Epilepsia , Lipoma , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética/efectos adversos , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Convulsiones , Lipoma/complicaciones , Lipoma/diagnóstico por imagen , Lipoma/cirugía
12.
NMC Case Rep J ; 9: 281-287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238606

RESUMEN

Meningoencephalocele in the lateral sphenoid sinus (SS) has been determined to be a rare entity often detected by cerebrospinal fluid (CSF) rhinorrhea. To date, the pathology of meningoencephalocele in the lateral SS has remained to be unclear in many cases. In this study, we report on a case of a 72-year-old woman with an arteriovenous malformation who presented with CSF rhinorrhea. Radiologic investigations revealed a left temporal meningoencephalocele in the lateral SS. We removed the meningoencephalocele and performed skull base repair, after which the CSF rhinorrhea resolved. Pathological examination showed congenital cortical abnormalities with dysmorphic neurons in various shapes and acquired chronic tissue alterations including fibrillary gliosis and scattered Rosenthal fibers. These findings may further aid in understanding the etiopathogenesis of meningoencephalocele in the lateral SS.

13.
Neurol Genet ; 8(5): e200030, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36176336

RESUMEN

Objectives: Leigh syndrome is a progressive encephalopathy characterized by symmetrical lesions in brain. This study aimed to investigate the clinicopathologic and genetic characteristics of a family with Leigh syndrome and hereditary neuropathy with liability to pressure palsy (HNPP). Methods: Data from a Japanese family's clinical features, MRIs, muscle biopsy, and an autopsy were analyzed. A whole-exome sequence was performed, as well as real-time PCR analysis to determine copy number variations and Western blot analyses. Results: The proband and her 2 siblings developed spastic paraplegia and mental retardation during childhood. The proband and her sister had peripheral neuropathy, whereas their father developed compression neuropathy. Leigh encephalopathy was diagnosed neuropathologically. Brain MRI revealed changes in cerebral white matter as well as multiple lesions in the brainstem and cerebellum. Muscle biopsy revealed type 2 fiber uniformity and decreased staining of cytochrome c oxidase. The COX10 missense mutation was identified through whole-exome sequence. A 1.4-Mb genomic deletion extending from intron 5 of COX10 to PMP22 was detected. Discussion: These findings suggest that in this family, Leigh syndrome is associated with a mitochondrial respiratory chain complex IV deficiency caused by biallelic COX10 mutations coexisting with HNPP caused by heterozygous PMP22 deletion.

14.
Neuropathol Appl Neurobiol ; 48(7): e12844, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35906771

RESUMEN

AIMS: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. In the present study, we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. METHODS: We performed pathological and biochemical analyses using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3; Alzheimer's disease, N = 2; normal controls, N = 11). In addition, the MSA model mice were examined behaviourally and physiologically. RESULTS: In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. CONCLUSIONS: Our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Atrofia de Múltiples Sistemas/patología , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Cuerpos de Inclusión/patología , Neuronas/patología , Encéfalo/patología
15.
Neuropathology ; 42(6): 488-504, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35701899

RESUMEN

The formation of misfolded protein aggregates is one of the pathological hallmarks of neurodegenerative diseases. We have previously demonstrated the cytoplasmic aggregate formation of adenovirally expressed transactivation response DNA-binding protein of 43 kDa (TDP-43), the main constituent of neuronal cytoplasmic aggregates in cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), in cultured neuronal cells under the condition of proteasome inhibition. The TDP-43 aggregate formation was markedly suppressed by co-infection of adenoviruses expressing heat shock transcription factor 1 (HSF1), a master regulator of heat shock response, and Praja1 RING-finger E3 ubiquitin ligase (PJA1) located downstream of the HSF1 pathway. In the present study, we examined other reportedly known E3 ubiquitin ligases for TDP-43, i.e. Parkin, RNF112 and RNF220, but failed to find their suppressive effects on neuronal cytoplasmic TDP-43 aggregate formation, although they all bind to TDP-43 as verified by co-immunoprecipitation. In contrast, PJA1 also binds to adenovirally expressed wild-type and mutated fused in sarcoma, superoxide dismutase 1, α-synuclein and ataxin-3, and huntingtin polyglutamine proteins in neuronal cultures and suppressed the aggregate formation of these proteins. These results suggest that PJA1 is a common sensing factor for aggregate-prone proteins to counteract their aggregation propensity, and could be a potential therapeutic target for neurodegenerative diseases that include ALS, FTLD, Parkinson's disease and polyglutamine diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Enfermedades Neurodegenerativas , Ubiquitina-Proteína Ligasas , Esclerosis Amiotrófica Lateral/patología , Degeneración Lobar Frontotemporal/patología , Factores de Transcripción del Choque Térmico , Agregado de Proteínas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales
16.
Neurosci Res ; 178: 78-82, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35122916

RESUMEN

Activation of human endogenous retrovirus-K (HERV-K) is one of the proposed risk factors for amyotrophic lateral sclerosis (ALS). The HERV-K envelope protein has been reported to show neurotoxicity, and development of therapy with reverse transcriptase inhibitors is being investigated. On the other hand, some reports have failed to show HERV-K activation in ALS. In this study, we analyzed the expression of HERV-K mRNA in the motor cortex and spinal cord of 15 Japanese patients with sporadic ALS and 19 controls using reverse transcriptase droplet digital PCR. This revealed no significant increase of HERV-K expression in ALS-affected tissues, suggesting that the association between ALS and HERV-K remains questionable.


Asunto(s)
Esclerosis Amiotrófica Lateral , Retrovirus Endógenos , Corteza Motora , Esclerosis Amiotrófica Lateral/genética , Retrovirus Endógenos/genética , Humanos , Japón , ARN Mensajero
17.
Neuropathol Appl Neurobiol ; 48(3): e12786, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34913181

RESUMEN

AIMS: Neuronal and glial inclusions comprising transactive response DNA-binding protein of 43 kDa (TDP-43) have been identified in the brains of patients with corticobasal degeneration (CBD), and a possible correlation between the presence of these inclusions and clinical phenotypes has been speculated. However, the significance of TDP-43 pathology in the pathomechanism of CBD has remained unclear. Here, we investigated the topographical relationship between TDP-43 inclusions and neuronal loss in CBD. METHODS: We estimated semi-quantitatively neuronal loss and TDP-43 pathology in the form of neuronal cytoplasmic inclusions (NCIs), astrocytic inclusions (AIs), oligodendroglial cytoplasmic inclusions (GCIs), and dystrophic neurites in 22 CNS regions in 10 patients with CBD. Then, the degree of correlation between the severity of neuronal loss and the quantity of each type of TDP-43 inclusion was assessed. We also investigated tau pathology in a similar manner. RESULTS: TDP-43 pathology was evident in nine patients. The putamen and globus pallidus were the regions most frequently affected (80%). NCIs were the most prominent form, and their quantity was significantly correlated with the severity of neuronal loss in more than half of the regions examined. The quantities of TDP-43 NCIs and tau NCIs were correlated in only a few regions. The number of regions where the quantities of TDP-43 AIs and GCIs were correlated with the severity of neuronal loss was apparently small in comparison with that of NCIs. CONCLUSIONS: TDP-43 alterations in neurons, not closely associated with tau pathology, may be involved in the pathomechanism underlying neuronal loss in CBD. There was a significant topographical correlation between neuronal cytoplasmic aggregation of TDP-43 and neuronal loss in CBD, suggesting that TDP-43 protein aberration might be associated with neuronal degeneration in CBD. There was no close correlation between the burden of TDP-43 and that of tau in neurons.


Asunto(s)
Degeneración Corticobasal , Proteínas de Unión al ADN , Encéfalo/patología , Proteínas de Unión al ADN/metabolismo , Humanos , Cuerpos de Inclusión/patología , Neuronas/patología , Proteínas tau/metabolismo
18.
Neuropathology ; 41(6): 450-456, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34779072

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The cardinal neuropathological features of PD include selective and progressive loss of pigmented neurons in the substantia nigra, deficiencies in dopaminergic signaling in the striatum, and occurrence of phosphorylated α-synuclein-identified Lewy bodies in the nervous system. Parkinsonism, the clinical presentation of movement disorders seen in PD, is a feature shared commonly by other pathologically distinct neurodegenerative diseases, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and multiple system atrophy (MSA). Consequently, it is sometimes difficult to distinguish PD from such parkinsonism-related neurological disorders. In addition, parkinsonism is not always a feature of certain neurodegenerative diseases, and it can sometimes develop as a result of various forms of drug intoxication or cerebrovascular disease. Here, we describe the clinicopathological features of three patients (cases 1, 2, and 3) diagnosed as having PSP, MSA, and PD, respectively, in each of whom the postmortem histopathological diagnosis differed from the final clinical diagnosis. Neuropathologically, they had suffered from coexistent disorders: PD, MSA, and argyrophilic grain disease (case 1); PD (case 2); and vascular parkinsonism (case 3). The variety of patients showing features of parkinsonism underlines the importance of careful long-term follow up followed by postmortem neuropathological evaluation.


Asunto(s)
Degeneración Corticobasal , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico
19.
Commun Biol ; 4(1): 1107, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548609

RESUMEN

In amyotrophic lateral sclerosis (ALS), TAR DNA-binding protein 43 (TDP-43), which is encoded by TARDBP, forms aggregates in the motor cortex. This aggregate formation may be triggered by an increase in the TDP-43 level with aging. However, the amount of TDP-43 is autoregulated by alternative splicing of the TARDBP 3'UTR, and how this autoregulation is affected by aging remains to be elucidated. We found that DNA demethylation in the autoregulatory region in the TARDBP 3'UTR reduced alternative splicing and increased TARDBP mRNA expression. Furthermore, in the human motor cortex, we found that this region was demethylated with aging, resulting in increased expression of TARDBP mRNA. The acceleration of DNA demethylation in the motor cortex was associated with the age of ALS onset. In summary, the dysregulation of TDP-43 autoregulation by age-related DNA demethylation in the motor cortex may explain the contribution of aging and motor system selectivity in ALS.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/genética , Desmetilación , Homeostasis , Factores de Edad , Proteínas de Unión al ADN/metabolismo , Humanos
20.
iScience ; 24(9): 102936, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34458695

RESUMEN

Amyloid ß-protein (Aß) may contribute to worsening of Alzheimer's disease (AD) through vascular dysfunction, but the molecular mechanism involved is unknown. Using ex vivo blood vessels and primary endothelial cells from human brain microvessels, we show that patient-derived Aß assemblies, termed amylospheroids (ASPD), exist on the microvascular surface in patients' brains and inhibit vasorelaxation through binding to the α3 subunit of sodium, potassium-ATPase (NAKα3) in caveolae on endothelial cells. Interestingly, NAKα3 is also the toxic target of ASPD in neurons. ASPD-NAKα3 interaction elicits neurodegeneration through calcium overload in neurons, while the same interaction suppresses vasorelaxation by increasing the inactive form of endothelial nitric oxide synthase (eNOS) in endothelial cells via mitochondrial ROS and protein kinase C, independently of the physiological relaxation system. Thus, ASPD may contribute to both neuronal and vascular pathologies through binding to NAKα3. Therefore, blocking the ASPD-NAKα3 interaction may be a useful target for AD therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...