Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400369, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847493

RESUMEN

In this study we developed a neopentyl 211At-labeled activated ester that incorporates a triazole spacer and applied it to the synthesis of an 211At-labeled cetuximab. The activated ester was synthesized via the nucleophilic 211At-astatination of a neopentyl sulfonate carrying two long alkyl chains that serve as a lipid tag, which was followed by the hydrolysis of an acetal. Additionally, we developed a novel Resin-Assisted Purification and Deprotection (RAPD) protocol involving a solid-phase extraction of the protected 211At-labeled compound from the mixture of the labeling reaction, hydrolysis of the acetal on the resin, and finally an elution of the 211At-labeled activator from the resin. This method allows the synthesis of an 211At-labeled activated ester with high purity through a simplified procedure that circumvents the need for HPLC purification. Using this 211At-labeled activated ester, we efficiently synthesized 211At-labeled cetuximab in 27±1% radiochemical yield with 95% radiochemical purity. This 211At-activated ester demonstrated high reactivity, and enabled the completion of the reaction with the antibody within 10 min. In comparative biodistribution studies between 211At-labeled cetuximab and the corresponding 125I-labeled cetuximab in normal mice, both the thyroid and stomach showed radioactivity levels that were less than 1.0% of the injected dose.

2.
Org Biomol Chem ; 21(36): 7467-7472, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37670575

RESUMEN

Radiohalogens with a short half-life are useful radioisotopes for radiotheranostics. Astatine-211 is an α-emitting radiohalogen and is expected to be applicable to targeted α therapy. A neopentyl labeling group is an effective hydrophilic labeling unit for various radiohalogens, which includes 211At. In this study, a 1-(N,N-dialkylcarbamoyl)-1,1-difluoromethanesulfonyl (CDf) ester was developed as a stable precursor for labeling with 211At, 77Br and 125I through a neopentyl labeling group. The CDf ester remained stable in an acetonitrile solution at room temperature and enabled the successful syntheses of 211At-labeled compounds in a highly radiochemical conversion in the presence of K2CO3. 77Br- and 125I-labeled compounds can be prepared from the CDf ester without a base. The utility of the CDf ester was demonstrated in the synthesis of a benzylguanidine with a neopentyl 211At-labeling group. The developed method afforded a 32% radiochemical yield of 211At-labeled benzylguanidine. However, a partial deastatination was observed under acidic conditions during the removal of an N-Boc protecting group. Deprotecting these groups under milder acidic conditions may improve the radiochemical yield. In conclusion, the CDf ester facilitates the syntheses of 211At, 125I and 77Br-labeled compounds that use a neopentyl labeling group for radiotheranostic applications. Further optimization of protecting groups and reaction conditions should enhance the total radiochemical yield of the 211At-labeled compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...