Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 477: 1-10, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984304

RESUMEN

Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula , Forma de la Célula , Animales , Apoptosis/fisiología , Fenómenos Biomecánicos , Competencia Celular , Homeostasis , Humanos , Células Madre/fisiología
2.
Cell Rep ; 32(3): 107924, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697990

RESUMEN

Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.


Asunto(s)
Matriz Extracelular/metabolismo , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Actomiosina/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Resistencia a la Tracción
3.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32004455

RESUMEN

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Asunto(s)
Señalización del Calcio/fisiología , Transformación Celular Neoplásica/metabolismo , Animales , Perros , Embrión no Mamífero , Células de Riñón Canino Madin Darby , Pez Cebra
4.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
5.
Nat Commun ; 9(1): 4695, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30410020

RESUMEN

At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process.


Asunto(s)
Epitelio/metabolismo , Mitosis , Pez Cebra/metabolismo , Familia-src Quinasas/metabolismo , Uniones Adherentes/metabolismo , Animales , Puntos de Control del Ciclo Celular , Línea Celular Transformada , Polaridad Celular , Supervivencia Celular , Citocinesis , Perros , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Activación Enzimática , Células de Riñón Canino Madin Darby , Fosforilación
6.
Nat Commun ; 8: 15431, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28580937

RESUMEN

The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Peces/embriología , Morfogénesis , Animales , Blástula/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Embrión no Mamífero , Desarrollo Embrionario , Células Epiteliales/citología , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Masculino , Microinyecciones , Microscopía Confocal , ARN Mensajero/metabolismo , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 114(12): E2327-E2336, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270608

RESUMEN

Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.


Asunto(s)
Endocitosis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Epitelio/embriología , Epitelio/metabolismo , Transducción de Señal , Transformación Genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rab5/genética
8.
Nat Cell Biol ; 19(4): 306-317, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28346437

RESUMEN

During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.


Asunto(s)
Fricción , Sistema Nervioso/embriología , Pez Cebra/embriología , Animales , Fenómenos Biomecánicos , Cadherinas/metabolismo , Comunicación Celular , Movimiento Celular , Embrión no Mamífero/citología , Endodermo/citología , Endodermo/embriología , Gastrulación , Hidrodinámica , Mesodermo/citología , Mesodermo/embriología , Modelos Biológicos , Morfogénesis , Mutación/genética , Placa Neural/citología , Placa Neural/embriología , Proteínas de Pez Cebra/metabolismo
9.
Development ; 142(22): 3933-42, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26428010

RESUMEN

The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Retina/embriología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Carbocianinas , Factores de Transcripción Forkhead , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Prosencéfalo/metabolismo
10.
J Vis Exp ; (96)2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25741625

RESUMEN

Here we describe a method to conditionally induce epithelial cell transformation by the use of the 4-Hydroxytamoxifen (4-OHT) inducible KalTA4-ERT2/UAS expression system(1) in zebrafish larvae, and the subsequent live imaging of innate immune cell interaction with HRASG12V expressing skin cells. The KalTA4-ERT2/UAS system is both inducible and reversible which allows us to induce cell transformation with precise temporal/spatial resolution in vivo. This provides us with a unique opportunity to live image how individual preneoplastic cells interact with host tissues as soon as they emerge, then follow their progression as well as regression. Recent studies in zebrafish larvae have shown a trophic function of innate immunity in the earliest stages of tumorigenesis(2,3). Our inducible system would allow us to live image the onset of cellular transformation and the subsequent host response, which may lead to important insights on the underlying mechanisms for the regulation of oncogenic trophic inflammatory responses. We also discuss how one might adapt our protocol to achieve temporal and spatial control of ectopic gene expression in any tissue of interest.


Asunto(s)
Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Ingeniería Genética/métodos , Lesiones Precancerosas/inmunología , Lesiones Precancerosas/patología , Piel/inmunología , Piel/patología , Animales , Animales Modificados Genéticamente , Comunicación Celular/fisiología , Transformación Celular Neoplásica/genética , ADN/administración & dosificación , ADN/genética , Inmunidad Innata , Larva/fisiología , Microinyecciones , Plásmidos/administración & dosificación , Plásmidos/genética , Lesiones Precancerosas/genética , Fenómenos Fisiológicos de la Piel/genética , Fenómenos Fisiológicos de la Piel/inmunología , Transgenes , Pez Cebra , Proteínas de Pez Cebra/genética
11.
Nat Commun ; 5: 4428, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25079702

RESUMEN

Recent studies have shown that certain types of transformed cells are extruded from an epithelial monolayer. However, it is not known whether and how neighbouring normal cells play an active role in this process. In this study, we demonstrate that filamin A and vimentin accumulate in normal cells specifically at the interface with Src- or RasV12-transformed cells. Knockdown of filamin A or vimentin in normal cells profoundly suppresses apical extrusion of the neighbouring transformed cells. In addition, we show in zebrafish embryos that filamin plays a positive role in the elimination of the transformed cells. Furthermore, the Rho/Rho kinase pathway regulates filamin accumulation and filamin acts upstream of vimentin in the apical extrusion. This is the first report demonstrating that normal epithelial cells recognize and actively eliminate neighbouring transformed cells and that filamin is a key mediator in the interaction between normal and transformed epithelial cells.


Asunto(s)
Filaminas/genética , Regulación de la Expresión Génica , Vimentina/genética , Pez Cebra/genética , Animales , Muerte Celular , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Perros , Embrión no Mamífero , Filaminas/antagonistas & inhibidores , Filaminas/metabolismo , Células de Riñón Canino Madin Darby , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transformación Genética , Vimentina/antagonistas & inhibidores , Vimentina/metabolismo , Pez Cebra/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
12.
Dev Biol ; 390(2): 231-46, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24662046

RESUMEN

The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface.


Asunto(s)
Evolución Biológica , Movimiento Celular/fisiología , Ectodermo/fisiología , Hipofaringe/embriología , Mesodermo/fisiología , Morfogénesis/fisiología , Vertebrados/embriología , Animales , Electroporación , Cabeza/anatomía & histología , Cabeza/embriología , Inmunohistoquímica , Hibridación in Situ , Microcirugia , Cresta Neural/fisiología , Especificidad de la Especie , Torso/anatomía & histología , Torso/embriología
13.
EMBO Rep ; 15(2): 175-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24397932

RESUMEN

Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator γ-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity. Furthermore, hMsd1/SSX2IP is essential for ciliogenesis, and during zebrafish embryogenesis, knockdown of its orthologue results in ciliary defects and disturbs left-right asymmetry. We propose that the Msd1 family comprises conserved microtubule-anchoring proteins.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Huso Acromático/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Cilios/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Represoras/genética , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Dev Biol ; 385(1): 52-66, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24161849

RESUMEN

Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.


Asunto(s)
Actomiosina/metabolismo , Blastodermo/embriología , Dinaminas/metabolismo , Pez Cebra/embriología , Uniones Adherentes/metabolismo , Animales , Blastodermo/crecimiento & desarrollo , Diferenciación Celular , Proteínas del Citoesqueleto/metabolismo , Dinaminas/genética , Embrión no Mamífero/metabolismo , Endocitosis , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Morfogénesis , Fosforilación , Saco Vitelino , Pez Cebra/genética , Quinasas Asociadas a rho/antagonistas & inhibidores
15.
Curr Top Dev Biol ; 101: 77-110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23140626

RESUMEN

Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.


Asunto(s)
Comunicación Celular , Movimiento Celular , Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Animales , Adhesión Celular , División Celular , Inhibición de Contacto , Drosophila/citología , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Gastrulación , Ratones , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Vía de Señalización Wnt , Xenopus/embriología , Xenopus/genética , Xenopus/metabolismo
16.
Development ; 139(21): 3897-904, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23048180

RESUMEN

Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.


Asunto(s)
Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Humanos , Xenopus laevis , Pez Cebra
17.
Environ Health Perspect ; 120(7): 990-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22510978

RESUMEN

BACKGROUND: Environmental estrogens alter hormone signaling in the body that can induce reproductive abnormalities in both humans and wildlife. Available testing systems for estrogens are focused on specific systems such as reproduction. Crucially, however, the potential for significant health impacts of environmental estrogen exposures on a variety of body systems may have been overlooked. OBJECTIVE: Our aim was to develop and apply a sensitive transgenic zebrafish model to assess real-time effects of environmental estrogens on signaling mechanisms in a whole body system for use in integrated health assessments. METHODS: We created a novel transgenic biosensor zebrafish containing an estrogen-inducible promoter derived with multiple tandem estrogen responsive elements (EREs) and a Gal4ff-UAS system for enhanced response sensitivity. RESULTS: Using our novel estrogen-responsive transgenic (TG) zebrafish, we identified target tissues for environmental estrogens; these tissues have very high sensitivity even at environmentally relevant concentrations. Exposure of the TG fish to estrogenic endocrine-disrupting chemicals (EDCs) induced specific expression of green fluorescent protein (GFP) in a wide variety of tissues including the liver, heart, skeletal muscle, otic vesicle, forebrain, lateral line, and ganglions, most of which have not been established previously as targets for estrogens in fish. Furthermore, we found that different EDCs induced GFP expression with different tissue response patterns and time trajectories, suggesting different potential health effects. CONCLUSION: We have developed a powerful new model for understanding toxicological effects, mechanisms, and health impacts of environmental estrogens in vertebrates.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Técnicas Biosensibles/métodos , Estrógenos/farmacología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Pez Cebra/genética
18.
J Cell Sci ; 125(Pt 1): 59-66, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250205

RESUMEN

In Drosophila, normal and transformed cells compete with each other for survival in a process called cell competition. However, it is not known whether comparable phenomena also occur in mammals. Scribble is a tumor suppressor protein in Drosophila and mammals. In this study we examine the interface between normal and Scribble-knockdown epithelial cells using Madin-Darby Canine Kidney (MDCK) cells expressing Scribble short hairpin RNA (shRNA) in a tetracycline-inducible manner. We observe that Scribble-knockdown cells undergo apoptosis and are apically extruded from the epithelium when surrounded by normal cells. Apoptosis does not occur when Scribble-knockdown cells are cultured alone, suggesting that the presence of surrounding normal cells induces the cell death. We also show that death of Scribble-knockdown cells occurs independently of apical extrusion. Finally, we demonstrate that apoptosis of Scribble-knockdown cells depends on activation of p38 mitogen-activated protein kinase (MAPK). This is the first demonstration that an oncogenic transformation within an epithelium induces cell competition in a mammalian cell culture system.


Asunto(s)
Proteínas de Drosophila , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Animales , Apoptosis , Línea Celular , Polaridad Celular , Forma de la Célula , Perros , Activación Enzimática , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Dev Cell ; 21(6): 1026-37, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22118769

RESUMEN

Collective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Complemento C3a/fisiología , Animales , Adhesión Celular/fisiología , Factores Quimiotácticos/genética , Factores Quimiotácticos/fisiología , Complemento C3a/genética , Transición Epitelial-Mesenquimal/fisiología , Modelos Neurológicos , Datos de Secuencia Molecular , Células Madre Multipotentes/fisiología , Cresta Neural/citología , Cresta Neural/embriología , Células-Madre Neurales/fisiología , Receptores de Complemento/genética , Receptores de Complemento/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
20.
Methods Cell Biol ; 104: 219-35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21924166

RESUMEN

Despite considerable genetic and genomic resources the positional cloning of forward mutations remains a slow and manually intensive task, typically using gel based genotyping and sequential rounds of mapping. We have used the latest genetic resources and genotyping technologies to develop two commercially available SNP panels of thousands of markers that can be used to speed up positional cloning.


Asunto(s)
Mapeo Cromosómico/métodos , Polimorfismo de Nucleótido Simple , Pez Cebra/genética , Animales , Secuencia de Bases , Clonación Molecular , ADN/genética , ADN/aislamiento & purificación , Sondas de ADN/genética , Pruebas Genéticas/métodos , Genoma , Genotipo , Larva , Masculino , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA