Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Res ; 53(sup1): 1163-1170, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30668224

RESUMEN

A healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial "nutrition and ageing" has different aspects and poses considerable challenges, providing a fertile ground for research and networks. The NutRedOx network will focus on the impact of redox-active compounds in food on healthy ageing, chemoprevention, and redox control in the context of major age-related diseases. The main aim of the NutRedOx network is to gather experts from Europe, and neighbouring countries, and from different disciplines that are involved in the study of biological redox active food components and are relevant to the ageing organism, its health, function, and vulnerability to disease. Together, these experts will form a major and sustainable EU-wide cluster in form of the NutRedOx Centre of Excellence able to address the topic from different perspectives, with the long-term aim to provide a scientific basis for improved nutritional and lifestyle habits, to train the next generation of multidisciplinary researchers in this field, to raise awareness of such habits among the wider population, and also to engage with industry to develop age-adequate foods and medicines.


Asunto(s)
Redes Comunitarias , Envejecimiento Saludable , Estado Nutricional , Enfermedad , Europa (Continente) , Humanos , Oxidación-Reducción
2.
Cardiovasc Endocrinol ; 6(4): 120-127, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31646129

RESUMEN

Chronic kidney disease (CKD) is a heterogeneous range of disorders affecting up to 11% of the world's population. The majority of patients with CKD die of cardiovascular disease (CVD) before progressing to end-stage renal disease. CKD patients have an increased risk of atherosclerotic disease as well as a unique cardiovascular phenotype. There remains no clear aetiology for these issues and a better understanding of the pathophysiology of CKD-associated CVD is urgently needed. Although nonanimal studies can provide insights into the nature of disease, the whole-organism nature of CKD-associated CVD means that high-quality animal models, at least for the immediate future, are likely to remain a key tool in improving our understanding in this area. We will discuss the methods used to induce renal impairment in rodents and the methods available to assess cardiovascular phenotype and in each case describe the applicability to humans.

3.
J Endocrinol ; 186(2): 353-65, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16079261

RESUMEN

Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted from the enteroendocrine L-cells of the gut and which acts primarily to potentiate the effects of glucose on insulin secretion from pancreatic beta-cells. It also stimulates insulin gene expression, proinsulin biosynthesis and affects the growth and differentiation of the islets of Langerhans. Previous studies on the mechanisms whereby GLP-1 regulates insulin gene transcription have focused on the rat insulin promoter. The aim of this study was to determine whether the human insulin promoter was also responsive to GLP-1, and if so to investigate the possible role of cAMP-responsive elements (CREs) that lie upstream (CRE1 and CRE2) and downstream (CRE3 and CRE4) of the transcription start site. INS-1 pancreatic beta-cells were transfected with promoter constructs containing fragments of the insulin gene promoter placed upstream of the firefly luciferase reporter gene. GLP-1 was found to stimulate the human insulin promoter, albeit to a lesser degree than the rat insulin promoter. Mutagenesis of CRE2, CRE3 and CRE4 blocked the stimulatory effect of GLP-1 while mutagenesis of CRE1 had no effect. Analysis of nuclear protein binding to the four CREs showed that, while they share some proteins, each CRE site is unique. Stimulation of transcription by GLP-1 through CRE2, CRE3 and CRE4 resulted in altered protein binding that was different for each of the CRE sites involved. Collectively, these data show that the four human CREs are not simply multiple copies of the rat CRE site and further emphasise that the human insulin promoter is distinct from the rodent promoter.


Asunto(s)
AMP Cíclico/genética , Regulación de la Expresión Génica , Glucagón/farmacología , Insulina/genética , Fragmentos de Péptidos/farmacología , Regiones Promotoras Genéticas , Precursores de Proteínas/farmacología , Elementos de Respuesta , Animales , Línea Celular Tumoral , AMP Cíclico/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Glucagón/metabolismo , Péptido 1 Similar al Glucagón , Humanos , Insulinoma , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Sitio de Iniciación de la Transcripción , Transfección/métodos
4.
J Biol Chem ; 278(13): 11303-11, 2003 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-12496284

RESUMEN

GPR40 is a member of a subfamily of homologous G protein-coupled receptors that include GPR41 and GPR43 and that have no current function or ligand ascribed. Ligand fishing experiments in HEK293 cells expressing human GPR40 revealed that a range of saturated and unsaturated carboxylic acids with carbon chain lengths greater than six were able to induce an elevation of [Ca(2+)](i), measured using a fluorometric imaging plate reader. 5,8,11-Eicosatriynoic acid was the most potent fatty acid tested, with a pEC(50) of 5.7. G protein coupling of GPR40 was examined in Chinese hamster ovary cells expressing the G alpha(q/i)-responsive Gal4-Elk1 reporter system. Expression of human GPR40 led to a constitutive induction of luciferase activity, which was further increased by exposure of the cells to eicosatriynoic acid. Neither the constitutive nor ligand-mediated luciferase induction was inhibited by pertussis toxin treatment, suggesting that GPR40 was coupled to G alpha(q/11.) Expression analysis by quantitative reverse transcription-PCR showed that GPR40 was specifically expressed in brain and pancreas, with expression in rodent pancreas being localized to insulin-producing beta-cells. These data suggest that some of the physiological effects of fatty acids in pancreatic islets and brain may be mediated through a cell-surface receptor.


Asunto(s)
Ácidos Grasos/farmacología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G , Animales , Secuencia de Bases , Calcio/metabolismo , Línea Celular , Clonación Molecular , Cricetinae , Cartilla de ADN , Ácidos Grasos/genética , Humanos , Hibridación in Situ , Luciferasas/genética , Datos de Secuencia Molecular , Receptores de Superficie Celular/genética
5.
Biochem Biophys Res Commun ; 298(3): 350-6, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12413947

RESUMEN

The expression of 47 genes involved in the biosynthesis and secretion of insulin, apoptosis, and cellular stress was evaluated in isolated human islets using cDNA probes arrayed on nitrocellulose membranes. Isolated human islets were cultured for four days, or one month, with glucose present at a concentration of either 5.5 or 16.7 mmol/L. Extracted islet total RNA was used to generate [32P]dATP-labelled complex cDNA targets and hybridised with immobilised cDNA arrays. The positive expression of 45 mRNA transcripts in isolated human islets was documented. The coefficient of variance for relative levels of expression of transcripts was <25% for 9, 25-50% for 22, and 50-100% for 10, indicating good reproducibility between islet preparations from five different human pancreas donors. This study demonstrates the utility of nitrocellulose-based cDNA arrays for a focused reproducible analysis of gene expression changes in human islets of Langerhans.


Asunto(s)
Expresión Génica , Islotes Pancreáticos/metabolismo , Células Cultivadas , Medios de Cultivo , ADN Complementario , Glucosa/administración & dosificación , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
6.
Regul Pept ; 104(1-3): 153-9, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11830290

RESUMEN

A single dose of the orexin-1 (OX1) receptor antagonist 1-(2-methylbenzoxazol-6-yl)-3-[1,5] naphthyridin-4-yl urea hydrochloride (SB-334867-A) reduces orexin-A-induced feeding and natural feeding in Sprague Dawley rats. In this study, the anti-obesity effects of SB-334867-A were determined in genetically obese (ob/ob) mice dosed with SB-334867-A (30 mg/kg, i.p.) once daily for 7 days, and then twice daily for a further 7 days. SB-334867-A reduced cumulative food intake and body weight gain over 14 days. Total fat mass gain, determined by Dual Emission X-ray Absorptiometry, was reduced, while gain in fat-free mass was unchanged. Fasting (5 h) blood glucose was also reduced at the end of the study, with a trend to reduced plasma insulin. Interscapular brown adipose tissue (BAT) weight was reduced, the tissue was noticeably darker in colour and quantitative PCR (TaqMan) analysis of this tissue showed a trend to an increase in uncoupling protein-1 mRNA expression, suggesting that SB-334867-A might stimulate thermogenesis. This was confirmed in a separate study in which a single dose of SB-334867-A (30 mg/kg, i.p.) increased metabolic rate over 4 h in ob/ob mice. OX1 receptor mRNA was detected in BAT, and its expression was increased by 58% by treatment with SB-334867-A. This is the first demonstration that OX1 receptor antagonists have potential as both anti-obesity and anti-diabetic agents.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Benzoxazoles/farmacología , Obesidad/fisiopatología , Receptores de Neuropéptido/antagonistas & inhibidores , Urea/farmacología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Insulina/sangre , Ratones , Ratones Endogámicos , Naftiridinas , Obesidad/sangre , Obesidad/genética , Receptores de Orexina , ARN Mensajero/biosíntesis , ARN Mensajero/efectos de los fármacos , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido/biosíntesis , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Urea/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...