Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 53(1): 66-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37889790

RESUMEN

Fall-planted cover crop (CC) within a continuous corn (Zea mays L.) system offers potential agroecosystem benefits, including mitigating the impacts of increased temperature and variability in precipitation patterns. A long-term simulation using the Decision Support System for Agrotechnology Transfer model was made to assess the effects of cereal rye (Secale cereale L.) on no-till continuous corn yield and soil properties under historical (1991-2020) and projected climate (2041-2070) in eastern Nebraska. Local weather data during the historical period were used, while climate change projections were based on the Canadian Earth System Model 2 dynamically downscaled using the Canadian Centre for Climate Modelling and Analysis Regional Climate Model 4 under two representative concentration pathways (RCP), namely, RCP4.5 and RCP8.5. Simulations results indicated that CC impacts on corn yield were nonsignificant under historical and climate change conditions. Climate change created favorable conditions for CC growth, resulting in an increase in biomass. CC reduced N leaching under climate change scenarios compared to an average reduction of 60% (7 kg ha- 1 ) during the historical period. CC resulted in a 6% (27 mm) reduction in total water in soil profile (140 cm) and 22% (27 mm) reduction in plant available water compared to no cover crop during historical period. CC reduced cumulative seasonal surface runoff/soil evaporation and increased the rate of soil organic carbon buildup. This research provides valuable information on how changes in climate can impact the performance of cereal rye CC in continuous corn production and should be scaled to wider locations and CC species.


Asunto(s)
Agricultura , Suelo , Agricultura/métodos , Zea mays , Nebraska , Carbono/análisis , Productos Agrícolas , Canadá , Grano Comestible/química , Grano Comestible/metabolismo , Cambio Climático , Secale/metabolismo , Agua
2.
Sci Rep ; 13(1): 20664, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001144

RESUMEN

In several regions across the globe, snow has a significant impact on hydrology. The amounts of water that infiltrate the ground and flow as runoff are driven by the melting of snow. Therefore, it is crucial to study the magnitude and effect of snowmelt. Snow droughts, resulting from reduced snow storage, can drastically impact the water supplies in basins where snow predominates, such as in the western United States. Hence, it is important to detect the time and severity of snow droughts efficiently. We propose the Snow Drought Response Index or SnoDRI, a novel indicator that could be used to identify and quantify snow drought occurrences. Our index is calculated using cutting-edge ML algorithms from various snow-related variables. The self-supervised learning of an autoencoder is combined with mutual information in the model. In this study, we use Random Forests for feature extraction for SnoDRI and assess the importance of each variable. We use reanalysis data (NLDAS-2) from 1981 to 2021 for the Pacific United States to study the efficacy of the new snow drought index. We evaluate the index by confirming the coincidence of its interpretation and the actual snow drought incidents.

3.
Sci Total Environ ; 898: 165509, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37459990

RESUMEN

Drought is a common and costly natural disaster with broad social, economic, and environmental impacts. Machine learning (ML) has been widely applied in scientific research because of its outstanding performance on predictive tasks. However, for practical applications like disaster monitoring and assessment, the cost of the models failure, especially false negative predictions, might significantly affect society. Stakeholders are not satisfied with or do not "trust" the predictions from a so-called black box. The explainability of ML models becomes progressively crucial in studying drought and its impacts. In this work, we propose an explainable ML pipeline using the XGBoost model and SHAP model based on a comprehensive database of drought impacts in the U.S. The XGBoost models significantly outperformed the baseline models in predicting the occurrence of multi-dimensional drought impacts derived from the text-based Drought Impact Reporter, attaining an average F2 score of 0.883 at the national level and 0.942 at the state level. The interpretation of the models at the state scale indicates that the Standardized Precipitation Index (SPI) and Standardized Temperature Index (STI) contribute significantly to predicting multi-dimensional drought impacts. The time scalar, importance, and relationships of the SPI and STI vary depending on the types of drought impacts and locations. The patterns between the SPI variables and drought impacts indicated by the SHAP values reveal an expected relationship in which negative SPI values positively contribute to complex drought impacts. The explainability based on the SPI variables improves the trustworthiness of the XGBoost models. Overall, this study reveals promising results in accurately predicting complex drought impacts and rendering the relationships between the impacts and indicators more interpretable. This study also reveals the potential of utilizing explainable ML for the general social good to help stakeholders better understand the multi-dimensional drought impacts at the regional level and motivate appropriate responses.

4.
Environ Monit Assess ; 195(8): 971, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466748

RESUMEN

Today's agri-food systems face the triple challenge of addressing food security, adapting to climate change, and reducing the climate footprint by reducing the emission of greenhouse gases (GHG). In agri-food systems, changes in land use and land cover (LULC) could affect soil physicochemical properties, particularly soil organic carbon (SOC) stock. However, the impact varies depending on the physical, social, and economic conditions of a given region or watershed. Given this, a study was conducted to quantify the impact of LULC and slope gradient on SOC stock and C sequestration rate in the Anjeni watershed, which is a highly populated and intensively cultivated area in Northwest Ethiopia. Seventy-two soil samples were collected from 0-15 and 15-30 cm soil depths representing four land use types and three slope gradients. Soil samples were selected systematically to match the historical records (30 years) for SOC stock comparison. Four land use types were quantified using Landsat imagery analysis. As expected, plantation forest had a significantly (p < 0.05) higher SOC (1.94 Mg ha-1) than cultivated land (1.38 Mg ha-1), and gentle slopes (1-15%) had the highest SOC (1.77 Mg ha-1) than steeper slopes (> 30%). However, higher SOC stock (72.03 Mg ha-1) and SOC sequestration rate (3.00 Mg ha-1 year-1) were recorded when cultivated land was converted to grassland, while lower SOC stock (8.87 Mg ha-1) and sequestration rate (0.77 Mg ha-1 year-1) were recorded when land use changed from cultivation to a plantation forest. The results indicated that LULC changes and slope gradient had a major impact on SOC stock and C sequestration rate over 30 years in a highly populated watershed. It is concluded that in intensively used watersheds, a carefully planned land use that involves the conversion of cultivated land to grassland could lead to an increase in soil C sequestration and contributes to reducing the carbon footprint of agri-food systems.


Asunto(s)
Monitoreo del Ambiente , Suelo , Etiopía , Suelo/química , Carbono/análisis , Huella de Carbono , Bosques , Secuestro de Carbono
5.
Sensors (Basel) ; 20(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526894

RESUMEN

The objective of this paper is to investigate the potential of sentinel-1 SAR sensor products and the contribution of soil roughness parameters to estimate volumetric residual soil moisture (RSM) in the Upper Blue Nile (UBN) basin, Ethiopia. The backscatter contribution of crop residue water content was estimated using Landsat sensor product and the water cloud model (WCM). The surface roughness parameters were estimated from the Oh and Baghdadi models. A feed-forward artificial neural network (ANN) method was tested for its potential to translate SAR backscattering and surface roughness input variables to RSM values. The model was trained for three inversion configurations: (i) SAR backscattering from vertical transmit and vertical receive (SAR VV) polarization only; (ii) using SAR VV and the standard deviation of surface heights ( h r m s ), and (iii) SAR VV, h r m s , and optimal surface correlation length ( l e f f ). Field-measured volumetric RSM data were used to train and validate the method. The results showed that the ANN soil moisture estimation model performed reasonably well for the estimation of RSM using the single input variable of SAR VV data only. The ANN prediction accuracy was slightly improved when SAR VV and the surface roughness parameters ( h r m s and l e f f ) were incorporated into the prediction model. Consequently, the ANN's prediction accuracy with root mean square error (RMSE) = 0.035 cm3/cm3, mean absolute error (MAE) = 0.026 cm3/cm3, and r = 0.73 was achieved using the third inversion configuration. The result implies the potential of Sentinel-1 SAR data to accurately retrieve RSM content over an agricultural site covered by stubbles. The soil roughness parameters are also potentially an important variable to soil moisture estimation using SAR data although their contribution to the accuracy of RSM prediction is slight in this study. In addition, the result highlights the importance of combining Sentinel-1 SAR and Landsat images based on an ANN approach for improving RSM content estimations over crop residue areas.

6.
Sci Total Environ ; 693: 133536, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31374498

RESUMEN

In the first two decades of the 21st century, 79 global big cities have suffered extensively from drought disaster. Meanwhile, climate change has magnified urban drought in both frequency and severity, putting tremendous pressure on a city's water supply. Therefore, tackling the challenges of urban drought is an integral part of achieving the targets set in at least 5 different Sustainable Development Goals (SDGs). Yet, the current literatures on drought have not placed sufficient emphasis on urban drought challenge in achieving the United Nations' 2030 Agenda for Sustainable Development. This review is intended to fill this knowledge gap by identifying the key concepts behind urban drought, including the definition, occurrence, characteristics, formation, and impacts. Then, four sub-categories of urban drought are proposed, including precipitation-induced, runoff-induced, pollution-induced, and demand-induced urban droughts. These sub-categories can support city stakeholders in taking drought mitigation actions and advancing the following SDGs: SDG 6 "Clean water and sanitation", SDG 11 "Sustainable cities and communities", SDG 12 "Responsible production and consumption", SDG 13 "Climate actions", and SDG 15 "Life on land". To further support cities in taking concrete actions in reaching the listed SDGs, this perspective proposes five actions that city stakeholders can undertake in enhancing drought resilience and preparedness:1) Raising public awareness on water right and water saving; 2) Fostering flexible reliable, and integrated urban water supply; 3) Improving efficiency of urban water management; 4) Investing in sustainability science research for urban drought; and 5) Strengthening resilience efforts via international cooperation. In short, this review contains a wealth of insights on urban drought and highlights the intrinsic connections between drought resilience and the 2030 SDGs. It also proposes five action steps for policymakers and city stakeholders that would support them in taking the first step to combat and mitigate the impacts of urban droughts.

7.
J Hydrol (Amst) ; 555: 535-546, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32647388

RESUMEN

Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

8.
J Vet Med ; 2015: 216085, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464950

RESUMEN

This study was conducted to determine the prevalence and type of ectoparasites and to identify risk factors associated with ectoparasite infestations in small ruminants in and around Sekela, Northwest Ethiopia. Clinical examination and laboratory analysis were made on 304 sheep and 96 goats. The collected raw data were analyzed using χ (2)-test. Out of the 400 sampled animals, 182 (45.5%) were infested with one or more ectoparasites. The prevalent ectoparasites observed were lice, ticks, Ctenocephalides species, Melophagus ovinus, and Demodex species. The infestation rates of ectoparasites with age and sex were significantly varied (P < 0.05) in sheep but not in goats (P > 0.05). Body condition score was not significantly associated (P > 0.05) with ectoparasites infestation in both sheep and goats. In our attempt, only two cases due to Demodex species were recorded in sheep. In conclusion, the prevalence of ectoparasites in the present study was high and this could affect the wellbeing and productivity of small ruminants. Therefore, to reduce ectoparasites prevalence and impact on the productivity and health status, planning of integrated control measures with sustainable veterinary services aiming at creating awareness about the importance and control of ectoparasites for livestock owners is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...