Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Iran J Microbiol ; 16(2): 219-226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38854985

RESUMEN

Background and Objectives: Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and the third most deadly cancer in the world. According to recent experimental reports, probiotics and their derivatives protect CRC patients from treatment-related side effects. Therefore, the present study aimed to investigate the cytotoxic impact of the cell-free supernatant (CFS) of Lentilactobacillus buchneri on the HT-29 cancer cell line. Materials and Methods: In the current study, we used the L. buchneri CFS, which was well isolated and identified in our previous investigation from traditional yogurt in the Arak region of Iran. The apoptosis induction in HT-29 cancer cells was assessed by cell cytotoxicity, flow cytometry, and qRT-PCR. Results: L. buchneri CFS inhibited the proliferation of HT-29 cancer cells in a time- and dose-dependent manner. The apoptotic effect of CFS was further supported by the flow cytometry data, which showed that the maximum incidence of apoptosis was observed in HT-29 cancer cells treated with the IC50 concentration of CFS after 72 hours. CFS of L. buchneri also exerted the up-regulating effect on the expression of pro-apoptotic genes including BAX, CASP9, and CASP3. L. buchneri CFS at an IC50 dose induced cell cycle arrest in the G0/G1 phase in HT-29 cells. Conclusion: This study indicates that L. buchneri CFS can prevent colorectal cancer (CRC) development in patients by inducing cancer cell apoptosis. This finding suggests that the CFS of L. buchneri could be used as a therapeutic agent for the control of CRC.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38758482

RESUMEN

Breast cancer has emerged as the most widespread and dangerous type of malignancy among women worldwide. Postbiotics have recently emerged as a promising novel adjunct in breast cancer therapy, due to their immunomodulatory effects and the potential to mitigate the adverse effects of conventional treatments. This study aims to investigate the therapeutic effects of postbiotics derived from Lactobacillus brevis (CSF2) and Lactobacillus casei (CFS5), specifically examining their ability to inhibit cell proliferation and induce apoptosis in MCF-7 breast cancer cells. In the current study, the anticancer activity of the cell-free supernatant of L. brevis and L. casei was investigated against MCF-7 cells using MTT assay, flow cytometry, and qRT-PCR technique. Both bacteria showed a high potential for the induction of cell death in MCF-7 cells. However, CFS2 cytotoxicity was significantly higher than CFS5. Flow cytometry results showed significant induction of early apoptosis in cells treated with both CFS2 and CFS5 within 48 h. The induction was notably higher in cells treated with CFS2 compared to CFS5. Overall, CFS2 therapy resulted in a greater increase in BAX and CASP9 gene expression, as well as an elevated BAX/BCL2 ratio within 48 h. These findings indicate that the CFS2 treatment showed a higher level of apoptotic activity than the CFS5 treatment. High biocompatibility was demonstrated following treatment with CFS2 and CFS5. These CFSs may serve as adjunctive medications for suppressing the proliferation of cancer cells. The results of the current study highlight the potential of postbiotics in cancer treatment and suggest that supernatants may serve as effective agents for suppressing cancer cell growth and viability.

3.
Heliyon ; 10(9): e30503, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726203

RESUMEN

Considering its overall impact on human health, letrozole (Let) has been described as having significant efficacy that could be improved by developing drug delivery systems. Considering the side effects of Let, this study aims to encapsulate Let in liposomes and PEGylated liposome nanoparticles (Lipo-Let-PEG) and evaluate the cytotoxic effects on the MCF-7 breast cancer cell line. For this purpose, the Lipo-Let-PEG formulation was designed and characterized by SEM, DLS, and FTIR methods, and the drug release from the optimized formulation and the stability of the optimized Lipo-Let-PEG were measured. Furthermore, the cytotoxicity and apoptotic studies were performed using MTT assay and flow cytometric analysis. According to the experimental data, the vesicle size and EE% were 170.05 ± 4.15 nm and 87.21 ± 1.36 %, respectively. The cumulative release from Lipo-Let-PEG at pH 5.4 and 7.4 was also approximately 60 % and 50 %, respectively. MTT results showed that Lip-Let-PEG produced more drug cytotoxicity than Lip-Let against MCF-7 cancer cells and was more compatible with normal cells. The results of apoptosis and cell cycle arrest using flow cytometry show that Lipo-Let-PEG caused the most significant increase in apoptotic rates and cell cycle arrest in cancer cells compared to other treated groups. In conclusion, Lipo-Let-PEG can be used as an anticancer agent by arresting cell cycle progression and inducing apoptosis, which can be applied in future studies to prevent breast cancer development.

4.
Sci Rep ; 14(1): 3100, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326490

RESUMEN

In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Células HT29 , Línea Celular Tumoral , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Gástricas/patología , Adenocarcinoma/patología , Proliferación Celular
5.
Biol Trace Elem Res ; 202(3): 1288-1304, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37392361

RESUMEN

As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 µg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.


Asunto(s)
Neoplasias de la Mama , Neoplasias del Colon , Lacticaseibacillus casei , Nanopartículas , Selenio , Humanos , Femenino , Selenio/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Células HT29 , Células MCF-7 , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Puntos de Control del Ciclo Celular
6.
J Trace Elem Med Biol ; 82: 127357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103517

RESUMEN

BACKGROUND: In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS: The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS: The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION: The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.


Asunto(s)
Antineoplásicos , Bacillus coagulans , Neoplasias de la Mama , Nanopartículas , Selenio , Humanos , Femenino , Selenio/farmacología , Selenio/química , Caspasa 3 , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Espectroscopía Infrarroja por Transformada de Fourier , Factor A de Crecimiento Endotelial Vascular , Proteína X Asociada a bcl-2 , Nanopartículas/química , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química
7.
Heliyon ; 9(10): e20657, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818003

RESUMEN

Ovarian cancer stands as a leading cause of cancer-related deaths among women globally. This malignancy has hindered successful treatment attempts due to its inherent resistance to chemotherapy agents. The utilization of cisplatin and doxorubicin-loaded liposomes emerges as a strategically advantageous approach in the realm of biomedical applications. This strategy holds promise for augmenting drug efficacy, mitigating toxicity, refining pharmacokinetics, and facilitating versatile drug delivery while accommodating combination therapies. In pursuit of scholarly investigations, the eminent databases, including PubMed/MEDLINE, ScienceDirect, Scopus, and Google Scholar, were meticulously scrutinized. Within this study, a nano-liposomal formulation was meticulously designed to serve as a co-delivery system. This system was optimized by varying lipid concentrations, hydration time, and DSPC: cholesterol molar ratios to efficiently encapsulate and load doxorubicin (DOX) and cisplatin (CIS) to overcome drug resistance problems. The Lipo (CIS + DOX) formulation underwent rigorous characterization including dimensions, entrapment efficiencies and drug release kinetics. Notably, the entrapment efficiency of cisplatin and doxorubicin loaded liposomal nanoparticles was an impressive 85.29 ± 1.45 % and 73.62 ± 1.70 %, respectively. Furthermore, Lipo (CIS + DOX) drug release kinetics exhibited pH-dependent properties, with lower drug release rates at physiological pH (7.4) than acidic (pH 5.4). Subsequent cytotoxicity assays revealed the enhanced biocompatibility of dual-drug liposomes with HFF cells compared to free drug combinations. Impressively, CIS and DOX-loaded liposomes induced significant cytotoxicity against A2780 in comparison to free drugs and combinatorial free drugs. Furthermore, the CIS and DOX-loaded liposome showed induced apoptotic potential and cell cycle arrest in A2780 compared to CIS, DOX, and their combination (CIS + DOX). Combining CIS and DOX via liposomal nanoparticles introduces a promising therapeutic avenue for addressing ovarian cancer. These nano-scale carriers hold the potential for attenuating the untoward effects of singular drugs and their attendant toxicities.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3867-3886, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368028

RESUMEN

Multiple potential drug delivery strategies have emerged as a result of recent advances in nanotechnology and nanomedicine. The aim of this research was to prepare an optimized system of PEGylated gingerol-loaded niosomes (Nio-Gin@PEG) as an excellent candidate for the treatment of human breast cancer cells. The preparation procedure was modified by adjusting the drug concentration, lipid content, and Span60/Tween60 ratio, resulting in high encapsulation efficacy (EE%), rapid release rate, and reduced size. The Nio-Gin@PEG exhibited significantly improved storage stability compared to the gingerol-loaded niosomes formulation (Nio-Gin), with minimal changes in EE%, release profile, and size during storage. Furthermore, Nio-Gin@PEG demonstrated pH-dependent release behavior, with delayed drug diffusion at physiological pH and significant drug diffusion under acidic conditions (pH = 5.4), making it a promising option for cancer treatment. Cytotoxicity tests indicated that Nio-Gin@PEG possessed excellent biocompatibility with human fibroblast cells while exerting a remarkable inhibitory effect on MCF-7 and SKBR3 breast cancer cells, attributed to the presence of gingerol and the PEGylated structure in the preparation. Nio-Gin@PEG also exhibited the ability to modulate the expression of target genes. We observed statistically significant down-regulation of the expression of BCL2, MMP2, MMP9, HER2, CCND1, CCNE1, BCL2, CDK4, and VEGF genes, along with up-regulation of the expression of BAX, CASP9, CASP3, and P21 genes. Flow cytometry results revealed that Nio-Gin@PEG could induce a higher rate of apoptosis in both cancerous cells compared to gingerol and Nio-Gin, owing to the optimal encapsulation and efficient drug release from the formulation, as confirmed by cell cycle tests. ROS generation demonstrated the superior antioxidant effect of Nio-Gin@PEG compared to other prepared formulations. The results of this study emphasize the potential of formulating highly biocompatible niosomes in the future of nanomedicine, enabling more precise and effective treatment of cancers.


Asunto(s)
Neoplasias de la Mama , Liposomas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Proteínas Proto-Oncogénicas c-bcl-2
9.
Sci Rep ; 13(1): 3256, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828883

RESUMEN

The present study examined the anticancer capabilities of Bacillus coagulans supernatant-produced copper oxide nanoparticles (BC-CuONPs) on MCF-7 and SKBR3 cancer cells. The X-ray diffraction, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and zeta potential techniques were used to characterize BC-CuONPs. This study also investigated the cellular and molecular processes of NPs' anti-proliferative and apoptotic properties on human breast cancer cells and compared them to the commercial pharmaceutical tamoxifen. The size of the spherical NP was from 5 to 47 nm with negative zeta potential. The MTT results showed the great cytotoxic effect of BC-CuONPs against breast cancer cells. The BC-CuONPs inhibited the growth of breast cancer cells in a time- and dose-dependent manner. The up-regulation of BCL2-associated X (BAX), cyclin dependent kinase inhibitor 1A (P21), Caspase 3 (CASP3), and Caspase 9 (CASP9), the down-regulation of BCL2 apoptosis regulator (BCL2), Annexin V-FITC/propidium iodide, and reactive oxygen species (ROS) generation results suggested that BC-CuONPs had a significant apoptotic impact when compared to the control. Scratch tests and vascular endothelial growth factor receptor gene (VEGF) down-regulation demonstrated that BC-CuONPs had anti-metastatic activity. The cell cycle analysis and down-regulation of Cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) revealed that cancer cells were arrested in the sub-G1 phase. Finally, the results showed that the secondary metabolites in the supernatant of Bacillus coagulans could form CuONPs, and biogenic BC-CuONPs showed anti-metastasis and anticancer properties on breast cancer cells while having less adverse effects on normal cells. Therefore, the synthesized CuONPs using B. coagulans supernatant can be shown as a potential candidate for a new therapeutic strategy in cancer management.


Asunto(s)
Bacillus coagulans , Neoplasias de la Mama , Nanopartículas del Metal , Nanopartículas , Humanos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Bacillus coagulans/metabolismo , Neoplasias de la Mama/patología , Factor A de Crecimiento Endotelial Vascular , Nanopartículas del Metal/química , Proteínas Proto-Oncogénicas c-bcl-2 , Óxidos
10.
Int J Biol Macromol ; 235: 123686, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36801304

RESUMEN

Alginate (AL), in the form of a hydrogel, is extensively used in drug delivery. In the current study, an optimum formulation of alginate-coated niosome-based nanocarriers for co-delivery of doxorubicin (Dox) and cisplatin (Cis) was obtained for the treatment of breast and ovarian cancers in an attempt to decrease drug doses and overcome multidrug resistance. The physiochemical characteristics of uncoated niosomes containing Cis and Dox (Nio-Cis-Dox) compared to alginate-coated niosomes formulation (Nio-Cis-Dox-AL). The three-level Box-Behnken method was examined to optimize the particle size, polydispersity index, entrapment efficacy (%), and percent drug release of nanocarriers. Nio-Cis-Dox-AL showed appropriate encapsulation efficiencies of 65.54 ± 1.25 % and 80.65 ± 1.80 % for Cis and Dox, respectively. Maximum drug release decreased from niosomes in case coated by alginate. Also, the zeta potential value of Nio-Cis-Dox nanocarriers decreased after coating with alginate. In vitro cellular and molecular experiments were performed to investigate the anticancer activity of Nio-Cis-Dox and Nio-Cis-Dox-AL. MTT assay showed the IC50 of Nio-Cis-Dox-AL was much lower than the Nio-Cis-Dox formulations and free drugs. Cellular and molecular assays demonstrated that Nio-Cis-Dox-AL caused significant increase in apoptosis induction rate and cell cycle arrest in MCF-7 and A2780 cancer cells, as compared to Nio-Cis-Dox and free drugs. Also, the Caspase 3/7 activity increased after treatment with coated niosomes compared to uncoated nisomes and the drug-free case. Synergetic cell proliferation inhibitory impacts of Cis and Dox were demonstrated against MCF-7 and A2780 cancer cells. All anticancer experimental data demonstrated that the co-delivery of Cis and Dox through alginate-coated niosomal nanocarriers was effective for ovarian and breast cancer treatment.


Asunto(s)
Liposomas , Neoplasias Ováricas , Humanos , Femenino , Liposomas/química , Cisplatino/farmacología , Línea Celular Tumoral , Alginatos/química , Doxorrubicina/farmacología , Doxorrubicina/química
11.
Sci Rep ; 13(1): 1440, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697494

RESUMEN

MicroRNAs are small molecules that play a crucial role in regulating a woman's reproductive system. The present study evaluates the expression of miR-21 in the serum, follicular fluid (FF), and cumulus cells (CCs) and their association with oocyte maturity and embryo quality in women undergoing intracytoplasmic sperm injection. Women subjects were divided into the case (54 Patients with female factor infertility) and control groups (33 patients with male factor infertility). The level of miR-21 was measured using Real-Time PCR. The level of miR-21 was significantly lower in the CCs, FF, and serum in the case compared to the control group (p < 0.05). MiR-21 abundance was higher in FF and CCs samples than in serum. Furthermore, there was a significant increase in CCs to FF in the case group (p < 0.05). A significant decrease in oocyte count, MII oocytes, and percentage of mature oocytes were observed in the case group (p < 0.05). The expression of miR-21 in FF and CCs was positively related to oocyte maturation, but no correlation with embryo development was observed. This study found that miR-21 is expressed less in women with female factor infertility, and human oocytes' development is crucially affected by the expression of miR-21. Therefore, miR-21 could provide new helpful biomarkers of oocyte maturity.


Asunto(s)
Infertilidad Femenina , MicroARNs , Humanos , Masculino , Femenino , Inyecciones de Esperma Intracitoplasmáticas , Semen/metabolismo , Oocitos/metabolismo , Líquido Folicular/metabolismo , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/genética , Infertilidad Femenina/terapia , MicroARNs/genética , MicroARNs/metabolismo
12.
Environ Sci Pollut Res Int ; 30(8): 20168-20184, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251187

RESUMEN

Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias Ováricas , Satureja , Humanos , Femenino , Cisplatino/farmacología , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde
13.
Bioimpacts ; 12(4): 301-313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975200

RESUMEN

Introduction: Due to the side effects of drugs, the development of nanoscale drug delivery systems has led to a significant improvement in medicinal therapies due to drug pharmacokinetics changes, decreased toxicity, and increased half-life of the drug. This study aimed to synthesize tamoxifen (TMX)-loaded L-lysine coated magnetic iron oxide nanoparticles as a nano-carrier to investigate its cytotoxic effects and anti-cancer properties against MCF-7 cancer cells. Methods: Magnetic Fe3O4 nanoparticles were synthesized and coated with L-lysine (F-Lys NPs). Then, TMX was loaded onto these NPs. The characteristics of synthesized nanoparticles (F-Lys-TMX NPs) were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The drug release was analyzed at pH 5.8 and pH 7.4. The MCF-7 cells were exposed to F-Lys-TMX NPs, F-Lys NPs, and TMX for 24, 48, and 72 hours. To evaluate the cytotoxic potential of designed nanoparticles, MTT and apoptosis assays, real-time PCR, and cell cycle analysis was carried out. Results: The F-Lys-TMX NPs had spherical morphology with a size ranging from 9 to 30 nm. By increasing the nanoparticles concentration and treatment time, more cell proliferation inhibition and apoptosis induction were observed in F-Lys-TMX NPs-treated cells compared to the TMX. The expression levels of ERBB2, cyclin D1, and cyclin E genes were down-regulated and expression levels of the caspase-3 and caspase-9 genes were up-regulated. Studies on the drug release revealed a slow and controlled pH-dependent release of the nanoparticles. Cell cycle analysis indicated that F-Lys-TMX NPs could arrest the cells at the G0/G1 phase. Conclusion: The findings suggest that F-Lys-TMX NPs are more effective and have the potential for cell proliferation inhibition and apoptosis induction compared to the TMX. Hence, F-Lys-TMX NPs can be considered as an anti-cancer agent against MCF-7 breast cancer cells.

14.
Mol Biol Rep ; 49(9): 8413-8427, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781602

RESUMEN

BACKGROUND: The present study aimed to evaluate the expression of the chemokine CXCL8 in both mRNA and protein levels in the serum, follicular fluid (FF), and cumulus cells (CCs) and its relationship with oocyte maturation and embryo quality in women undergoing intracytoplasmic sperm injection (ICSI). METHODS: A total of 87 women who underwent an ICSI cycle were evaluated in two groups, including the case group (female factor infertility) and the control group (fertile). In the serum, FF, and CCs, the protein and mRNA expression of CXCL8 were measured using immunosorbent assay and Real-Time PCR, respectively. The quality and quantity of the oocytes and embryos were assessed, and the relationship of protein and mRNA CXCL8 was evaluated with oocyte maturation and embryo quality. RESULTS: The level of protein and mRNA of CXCL8 was significantly higher in the serum, FF, and CCs in the case group than in the control group. In the case group, the expression of mRNA and protein of CXCL8 had a significant increase in FF and CCs compared to serum; also, there was a CXCL8 protein significant increase in FF compared to CCs. The count of oocytes obtained, MII oocytes and the percentage of oocyte maturity significantly decreased in the case group. The expression of CXCL8 was inversely related to oocyte maturation, but no relationship was observed with embryo quality. CONCLUSIONS: The elevated concentrations of CXCL8 in the serum and FF seem to be a predictor as a potential non-invasive biomarker for the oocyte maturation outcome in women with different causes of female factor infertility.


Asunto(s)
Infertilidad Femenina , Inyecciones de Esperma Intracitoplasmáticas , Femenino , Humanos , Infertilidad Femenina/metabolismo , Interleucina-8/genética , Masculino , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semen/metabolismo , Inyecciones de Esperma Intracitoplasmáticas/métodos
15.
Iran J Pathol ; 17(2): 183-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463725

RESUMEN

Background & Objective: Breast cancer is the most common cancer among women. One of the most effective treatments for breast cancer is chemotherapy, in which specific drugs destroy the mass and its proliferation is inhibited. Chemotherapy is the most effective adjunctive therapy when multiple medications are used concurrently. Also, combining the drugs with nanocarrier has become an important strategy in targeted therapy. This study is designed to assess the apoptosis induction, cell cycle arrest, and anti-cancer potential of Tamoxifen-Curcumin-loaded niosomes against MCF-7 Cancer Cells. Methods: A novel niosomal formulation of tamoxifen-curcumin with Span 80 and lipid to drug ratio of 20 was employed. The MCF-7 cells were cultured and then treated with IC50 value of tamoxifen-curcumin-loaded niosomes, the combination of tamoxifen and curcumin, tamoxifen, and curcumin alone. Flow cytometry, Real-Time PCR, and cell cycle analysis tests were conducted to evaluate the induction of apoptosis. Results: Drug-loaded niosomes caused up-regulation of bax and p53 genes and down-regulation of bcl2 gene. Flow cytometry studies showed that niosomes containing tamoxifen-curcumin increased apoptosis rate in MCF-7 cells compared to the combination of tamoxifen and curcumin owing to the synergistic effect between the two drugs along with higher cell uptake by formulation niosomal. These results were also confirmed by cell cycle analysis. Conclusion: Co-delivery of curcumin and tamoxifen using optimized niosomal formulation revealed that at acidic pH of MCF-7 cancer cells, released drugs from niosomal carriers would be more effective than physiological pH. This feature of niosomal nanoparticles can reduce the side effects of drugs in normal cells. Niosomal nanoparticles might be used as a biological anti-cancer factor in treatment of breast cancer.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 51-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34661718

RESUMEN

Carbohydrate polymers were widely used in pharmaceuticals and drug delivery systems due to their biodegradability and biocompatibility. Among them, chitosan (Cs) has been considered in many new drug delivery systems. Poly(ethylene glycol) as a hydrophilic polymer can increase the solubility and stealth functions of nanocarriers. The Fe3O4 nanoparticles functionalized with polymers act as non-toxic drug vehicles for tumor targeting under external magnetic fields. In present study, the Fe3O4/SiO2-NH2 nanoparticles were prepared and then functionalized with methoxy-PEGylated chitosan (Cs-g-mPEG2000) and the hydroxyurea (HU) was loaded on this nanoparticles. The structure, crystallinity, and morphology of HU/Fe3O4/SiO2/Cs-g-mPEG2000 were determined using spectroscopic and electron microscopy analysis. Encapsulation efficiency of HU and the percentage of loading and release rate at different pH values at 37 °C were examined. Maximum drug release was observed at pH = 7.4. According to TEM results, the nanoparticle sizes were between 18 and 157 nm. The cytotoxicity effect of HU-loaded nanoparticles against MCF-7 human breast cancer cell was evaluated using MTT assay and cell cycle arrest analysis. The inhibitory concentration (IC50) values were 249 and 85 µg/mL on the MCF-7 cell line compared to the control group in 24 h and 96 h, respectively. In addition, the expression of p53 and lincRNA-P21 genes in treated cells and control group was assessed using real-time PCR, and the results showed that the ratio of p53 expression to lincRNA-P21 in MCF-7 cells was significantly increased (P < 0.05). The cell cycle arrested in the S-phase and the population of cells increased 1.3-fold compared to the control group.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Hidroxiurea/farmacología , Nanopartículas , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quitosano/química , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Compuestos Férricos/química , Humanos , Concentración de Iones de Hidrógeno , Hidroxiurea/administración & dosificación , Concentración 50 Inhibidora , Células MCF-7 , Tamaño de la Partícula , Polietilenglicoles/química , ARN Largo no Codificante/genética , Dióxido de Silicio/química , Proteína p53 Supresora de Tumor/genética
18.
Bioimpacts ; 11(4): 245-252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631486

RESUMEN

Introduction: Nowadays, probiotic bacteria have been considered as a factor in the prevention and treatment of cancer, especially by induction of apoptosis. This study aimed to evaluate the cytotoxic, anti-proliferative, and apoptotic effects of the supernatant of probiotic Lactobacillus rhamnosus on HT-29 cell line. Methods : Molecular identification of probiotic L. rhamnosus was carried out using specific primers of 16S rRNA gene and sequencing. HT-29 cells were treated with different concentrations of bacterial supernatants at 24, 48, and 72 hours. MTT assay, Annexin V-FITC, real-time PCR, cell cycle analysis, and DAPI staining tests were conducted to evaluate the induction of apoptosis. The level of cyclin D1 protein was measured by immunocytochemistry method. Results: The supernatant of L. rhamnosus inhibited the growth of HT-29 cancer cells in a dose- and time-dependent manner. The results of flow cytometry confirmed apoptotic cell death. Probiotic bacterial supernatant caused up-regulation of pro-apoptotic genes including caspase-3, caspase-9, and Bax. In addition, they resulted in down-regulation of Bcl2 and a decrease in expression levels of cyclin D1, cyclin E, and ERBB2 genes. Cancer cells were arrested in the G0/G1 phase of the cell cycle. The results of immunocytochemistry showed significant down-regulation of cyclin D1 protein during the 48 hours treatment with bacterial supernatant compared to the untreated cells. Conclusion: The supernatant of probiotic L. rhamnosus has a great potential to inhibit the proliferation of HT-29 cells and the induction of apoptosis. L. rhamnosus might be used as a biological anti-cancer factor in the prevention and treatment of colon cancer.

19.
Iran J Microbiol ; 13(6): 839-847, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35222863

RESUMEN

BACKGROUND AND OBJECTIVES: Secondary metabolites in the supernatants of probiotic microorganisms have shown anticancer effects. The present study was aimed to investigate the cytotoxicity of Bacillus coagulans supernatants and their role in apoptosis induction in MCF7 cancer cells. MATERIALS AND METHODS: The inhibition of MCF7 cancer cells by Bacillus coagulans supernatants was assessed by MTT assay at three exposure times of 24, 48, and 72 h. Apoptosis induction was explored by flow cytometry while the expression levels of bax, caspase 3, caspase 9, and bcl2 were examined by real-time PCR and compared with normal HFF cells. RESULTS: Bacillus coagulans supernatants exhibited inhibitory effects on MCF7 cells in a concentration-dependent and time-dependent manner; while lower cytotoxic effects were observed in normal HFF cells. The increase in the expression of bax, caspase 3, and caspase 9 genes and the decrease in the anti-apoptotic gene of bcl2, along with the flow cytometry results, confirmed the induction of apoptosis in the cancer cells. CONCLUSION: Regarding the cytotoxic influence of Bacillus coagulans supernatants against breast cancer cells, this bacterium can be considered as a potential candidate for a novel therapeutic strategy with lower side effects which of course requires further investigations.

20.
Int J Biol Macromol ; 158: 338-357, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380103

RESUMEN

The aim of this study was to synthesize the alginate nanogel encapsulating Artemisia ciniformis extract and to evaluate its apoptotic effects on AGS gastric cancer cells. Characterization of the synthesized nanogel was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Dynamic light scattering method (DLS), and Zeta potential. The cytotoxic effects and apoptosis induction of A. ciniformis extract, nanogel encapsulating A. ciniformis extract and alginate nanogel alone were evaluated in the AGS cell line using MTT assay, Annexin-FITC, DAPI staining, cell cycle analysis, and real-time PCR for 24, 48 and 72 h. Anti-proliferative activity and apoptosis induction were observed in the cells treated with alginate nanogel encapsulating A. ciniformis extract and free extract. The alginate nanogel encapsulating A. ciniformis extract had greater potential for the induction of apoptosis than free extract. Flow cytometric results of the cell cycle showed that synthesized nanogel encapsulating A. ciniformis extract could inhibit cell proliferation and arrest the cell cycle at the G0/G1 phase. Induction of apoptosis occurred in a time-, and dose-dependent manner. Expression levels of pro-apoptotic genes were up-regulated. Down-regulation of anti-apoptotic and metastatic genes were detected. It can be concluded that nanogel encapsulating A. ciniformis extract would be a potent anticancer agent against AGS gastric cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...