Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(21): 4233-4241, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38758579

RESUMEN

We have designed, synthesized, and characterized a donor-acceptor triad, SPS-PPY-C60, that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce. DFT calculations supported the redox properties wherein the electron density of the highest molecular orbital (HOMO) was distributed over the donor phenothiazine-porphyrin entity while the lowest unoccupied molecular orbital (LUMO) was distributed over the fullerene acceptor. TD-DFT studies suggested the involvement of both the S2 and S1 states in the charge transfer process. The steady-state emission spectrum, when excited either at porphyrin Soret or visible band absorption maxima, revealed quenched emission both in nonpolar and polar solvents, suggesting the occurrence of excited state events. Finally, femtosecond transient absorption spectral studies were performed to witness the charge separation by utilizing solvents of different polarities. The transient data was further analyzed by GloTarAn by fitting the data with appropriate models to describe photochemical events. From this, the average lifetime of the charge-separated state calculated was found to be 169 ps in benzonitrile, 319 ps in dichlorobenzene, 1.7 ns in toluene for Soret band excitation, and ∼320 ps for Q-band excitation in benzonitrile.

2.
Luminescence ; 35(8): 1338-1349, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32510860

RESUMEN

Organic light-emitting diodes (OLED) are gaining attention and making a significant contribution to the area of lighting and displays technology. The synthesis of new materials that can act as a host as well as emissive materials is crucial and efforts have been made in this direction in this research. Here, four star-shaped fluorophores, with a donor-acceptor (D-A) structure and with triphenylamine and phenanthroimidazole groups with different substitutions at the N1 position of the imidazole moiety, were designed and synthesized. Synthesized fluorophores showed sufficient thermal stability (10% Td in the range 230-280°C). Ultraviolet-visible (UV-vis) spectra of the fluorophores showed multiple absorption bands (bands in the UV region, due to π-π* transitions of the conjugated aromatic portion) and all fluorophores showed blue emission in dichloromethane solution. Electrochemical analysis indicated that all fluorophores had excellent oxidation and reduction characteristics. Theoretical calculations were also performed to better understand the structural and electronic properties of the synthesized fluorophores. All fluorophores had higher triplet (T1 ) energy (ranging from 2.49-2.52 eV) than the widely used green (Ir(ppy)3 -2.4 eV) and red (Ir (piq)2 acac - 2.2 eV) dopant materials. These results indicated that these fluorophores would be useful as host materials for efficient green and red phosphorescent OLEDs.


Asunto(s)
Luz , Modelos Teóricos , Electrónica , Colorantes Fluorescentes , Iluminación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...