Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 75: 243-267, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343023

RESUMEN

Bacterial protein synthesis rates have evolved to maintain preferred stoichiometries at striking precision, from the components of protein complexes to constituents of entire pathways. Setting relative protein production rates to be well within a factor of two requires concerted tuning of transcription, RNA turnover, and translation, allowing many potential regulatory strategies to achieve the preferred output. The last decade has seen a greatly expanded capacity for precise interrogation of each step of the central dogma genome-wide. Here, we summarize how these technologies have shaped the current understanding of diverse bacterial regulatory architectures underpinning stoichiometric protein synthesis. We focus on the emerging expanded view of bacterial operons, which encode diverse primary and secondary mRNA structures for tuning protein stoichiometry. Emphasis is placed on how quantitative tuning is achieved. We discuss the challenges and open questions in the application of quantitative, genome-wide methodologies to the problem of precise protein production.


Asunto(s)
Escherichia coli , Operón , Escherichia coli/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética
2.
Cell Syst ; 7(6): 580-589.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30553725

RESUMEN

Constituents of multiprotein complexes are required at well-defined levels relative to each other. However, it remains unknown whether eukaryotic cells typically produce precise amounts of subunits, or instead rely on degradation to mitigate imprecise production. Here, we quantified the production rates of multiprotein complexes in unicellular and multicellular eukaryotes using ribosome profiling. By resolving read-mapping ambiguities, which occur for a large fraction of ribosome footprints and distort quantitation accuracy in eukaryotes, we found that obligate components of multiprotein complexes are produced in proportion to their stoichiometry, indicating that their abundances are already precisely tuned at the synthesis level. By systematically interrogating the impact of gene dosage variations in budding yeast, we found a general lack of negative feedback regulation protecting the normally precise rates of subunit synthesis. These results reveal a core principle of proteome homeostasis and highlight the evolution toward quantitative control at every step in the central dogma.


Asunto(s)
Complejos Multiproteicos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Animales , Humanos , Ratones , Complejos Multiproteicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pez Cebra
3.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29606352

RESUMEN

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Asunto(s)
Enzimas/química , Escherichia coli/enzimología , Evolución Molecular , Isoformas de Proteínas/química , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Familia de Multigenes , Operón , Filogenia , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ribosomas/química , Análisis de Secuencia de ARN , Transcriptoma
4.
Biomacromolecules ; 15(12): 4544-50, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25371967

RESUMEN

This study aims to extend a structural and biophysical understanding of a coiled-coil based peptide model system that serves as a scaffold for the anionic porphyrin, TPPS4. This is part of an ongoing biomaterials effort to create photoelectronically active mesoscale fibrils for surface deposition and characterization of conductivity properties. The goals are two-fold: (1) to explore optimal basic side-chain moieties for tight binding to TPPS4 and (2) to test the binding of various metalated TPPS4 derivatives to our peptide model system. The latter goal is to control the electronic and redox properties of the fibrillar biomaterials. A soluble version of the peptide biomaterial was used in order to probe binding and to extract thermodynamically rigorous equilibrium binding constants. UV-visible spectroscopy and circular dichroism spectropolarimtery are used to measure the effects of binding on the Soret band of the porphyrin and the helical signal of the peptide, respectively. For the first study, it was found that lysine, ornithine, and arginine are equally robust at engaging TPPS4 with low micromolar binding affinity. In the case of the metalated porphyrins, submicromolar binding affinity was observed for Cu(II), Ni(II), and Pd(II). The ability of these metalated porphyrins to bind with high affinity is dependent largely on structural perturbations of the porphyrin molecule, rather than on induced electronic effects.


Asunto(s)
Péptidos/química , Porfirinas/química , Sitios de Unión , Materiales Biocompatibles/química , Dicroismo Circular , Modelos Moleculares , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...