Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242634

RESUMEN

DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harboring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic (mDA) neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle (SV) recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. In order to explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.

2.
Immunity ; 57(1): 86-105.e9, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159572

RESUMEN

Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Microglía/metabolismo , Neuronas/metabolismo , Animales , Ratones
3.
Biochem Pharmacol ; 213: 115633, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269887

RESUMEN

Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Autofagia , Metabolismo Energético
4.
J Plast Reconstr Aesthet Surg ; 75(11): 4069-4073, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36167709

RESUMEN

Although there is increasing evidence of migraine headaches having extracranial origins, the exact mechanisms underlying the pathogenesis of surgically treated migraines continue to be poorly investigated and described. We studied the microscopic and ultrastructural characteristics of superficial temporal artery (STA) and occipital (OA) artery in the auriculotemporal and great occipital trigger points of migraine patients to determine their possible role in migraine etiopathogenesis. Fifteen biopsies, 10 of STA and 5 from OAs, were collected intraoperatively during migraine surgery and immediately processed for optical and ultramicroscopic analysis. We detected the following anomalies in all the specimens: (a) endothelial damage with internal elastic lamina fragmentation and intimal thickening; (b) marked irregularity in the shape and metachromasia of the vascular smooth muscle cells (VSMCs), separation of cells by abundant extracellular matrix and vacuoles. The electron microscopy analysis confirmed that presumed VSMCs infiltrated the intima layer revealing a consistent shift of VSMCs from contractile to synthetically active phenotypes, endosome-like organelles, multilamellar structures, abundant extracellular vacuoles filled with fine granular material and membranes, and extracellular vesicles in the matrix space surrounding synthetically active cells. Our study revealed specific alterations in the vasculature at the neurovascular bundles of the temporal and occipital trigger sites. These findings are indicative of an active involvement of the arteries in the auriculotemporal and great occipital trigger sites in evoking migraine.


Asunto(s)
Trastornos Migrañosos , Humanos , Trastornos Migrañosos/etiología , Trastornos Migrañosos/cirugía , Arterias Temporales/anatomía & histología , Arterias
5.
Nat Commun ; 13(1): 3497, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715404

RESUMEN

The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.


Asunto(s)
Ácido Glutámico , Sinapsis , Exocitosis/fisiología , Neurotransmisores , Sinapsis/fisiología , Transmisión Sináptica/fisiología
6.
Membranes (Basel) ; 12(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35448364

RESUMEN

Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.

7.
Histochem Cell Biol ; 157(4): 459-465, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35091837

RESUMEN

Migraine is a neurological disorder and one of the most common pain conditions worldwide. Despite its prevalence, the basic biology and underlying mechanisms contributing to the development of migraine are still poorly understood. It is still unclear, for instance, whether the vasculature, both extra and intracranial, plays a significant role in the generation of migraine pain. Neuroimaging data, indeed, have reported conflicting results on blood vessels abnormalities like vasodilation, while functional studies suggest that vessels dysfunction may extend beyond vasodilation. Here we combined light and electron microscopy imaging to investigate the fine structure of superficial temporal (STA) and occipital arteries (OA) from patients that underwent minimally invasive surgery for migraine. Using optical microscopy, we observed that both STA and OA vessels showed marked endothelial thickening and internal elastic lamina fragmentation. In the muscular layer, we found profound shape changes of vascular smooth muscle cells (VSMCs), abundant extracellular matrix, and the presence of clear extracellular vacuoles. The electron microscopy analysis confirmed putative VSMCs infiltrated within the intima layer and revealed a consistent shifting of VSMCs from contractile to a synthetically active phenotype. We also report the presence of (i) abundant extracellular vacuoles filled with fine granular material and membranes, (ii) multilamellar structures, (iii) endosome-like organelles, and (iv) bona fide extracellular vesicles in the matrix space surrounding synthetically active cells. As both the endothelial layer and VSMCs coordinate a variety of vascular functions, these results suggest that a significant vascular remodeling is occurring in STA and OA of migraine patients. Thus, this phenomenon may represent an important target for future investigation designed toward the development of new therapeutic approaches.


Asunto(s)
Trastornos Migrañosos , Remodelación Vascular , Humanos , Microscopía Electrónica , Músculo Liso Vascular , Dolor
8.
J Histochem Cytochem ; 69(7): 461-473, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34126793

RESUMEN

Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration-approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30-100 nm) ERBB2- EVs and large (>100 nm) ERBB2+ EVs. In particular, we found that NE increased the overall release of EVs, which displayed a reduced ERBB2 positivity compared with controls. Taken together, these results provide novel insight into the effects of NE on ERBB2+ BCa cells that may lead to a reduction of ERBB2 potentially transferred to distant target cells by EVs.


Asunto(s)
Neoplasias de la Mama/patología , Endocitosis/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Imagen Molecular , Quinolinas/farmacología , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Femenino , Humanos
9.
Sci Adv ; 6(33): eabb3567, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851175

RESUMEN

Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.


Asunto(s)
Sueño REM , Sueño , Animales , Encéfalo/fisiología , Fenómenos Electrofisiológicos , Ratones , Sueño/genética , Sueño REM/genética , Vigilia/genética
10.
Proc Natl Acad Sci U S A ; 117(7): 3819-3827, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015138

RESUMEN

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1-/- knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


Asunto(s)
Neurotransmisores/metabolismo , Sinaptotagmina I/metabolismo , Animales , Exocitosis , Ratones , Ratones Noqueados , Mutación Missense , Sinapsis/metabolismo , Transmisión Sináptica , Sinaptotagmina I/genética
11.
Elife ; 52016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731518

RESUMEN

Recycling of synaptic vesicles (SVs) is a fundamental step in the process of neurotransmission. Endocytosed SV can travel directly into the recycling pool or recycle through endosomes but little is known about the molecular actors regulating the switch between these SV recycling routes. ADP ribosylation factor 6 (Arf6) is a small GTPase known to participate in constitutive trafficking between plasma membrane and early endosomes. Here, we have morphologically and functionally investigated Arf6-silenced hippocampal synapses and found an activity dependent accumulation of synaptic endosome-like organelles and increased release-competent docked SVs. These features were phenocopied by pharmacological blockage of Arf6 activation. The data reveal an unexpected role for this small GTPase in reducing the size of the readily releasable pool of SVs and in channeling retrieved SVs toward direct recycling rather than endosomal sorting. We propose that Arf6 acts at the presynapse to define the fate of an endocytosed SV.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Hipocampo/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/antagonistas & inhibidores , Factores de Ribosilacion-ADP/genética , Animales , Silenciador del Gen , Ratas Sprague-Dawley
12.
J Neurosci ; 34(21): 7266-80, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849359

RESUMEN

Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/citología , Sinapsis/ultraestructura , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Quinasa 5 Dependiente de la Ciclina/farmacología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Embarazo , Unión Proteica/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sinapsinas/deficiencia , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/ultraestructura , Tetrodotoxina/farmacología
13.
Mol Biol Cell ; 24(2): 129-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154999

RESUMEN

The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained controversial. We report that ErbB2 levels inversely impact cell clathrin-mediated endocytosis (CME) capacity. Indeed, the high levels of the receptor are responsible for its own low internalization rate. GA treatment does not directly modulate ErbB2 CME rate but it affects ErbB2 recycling fate, routing the receptor to modified multivesicular endosomes (MVBs) and lysosomal compartments, by perturbing early/recycling endosome structure and sorting capacity. This activity occurs irrespective of the cargo interaction with HSP90, as both ErbB2 and the constitutively recycled, HSP90-independent, transferrin receptor are found within modified endosomes, and within aberrant, elongated recycling tubules, leading to modified MVBs/lysosomes. We propose that GA, as part of its anticancer activity, perturbs early/recycling endosome sorting, routing recycling cargoes toward mixed endosomal compartments.


Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Lactamas Macrocíclicas/farmacología , Lisosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Receptor ErbB-2/metabolismo , Transferrina/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Clatrina/fisiología , Vesículas Cubiertas por Clatrina/metabolismo , Dinaminas/metabolismo , Tomografía con Microscopio Electrónico , Endocitosis , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Ratones , Microscopía Fluorescente , Cuerpos Multivesiculares/efectos de los fármacos , Cuerpos Multivesiculares/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...