Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37717171

RESUMEN

Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.


Asunto(s)
Áfidos , Humanos , Masculino , Animales , Femenino , Áfidos/genética , Pisum sativum , Variación Genética , Partenogénesis/genética , Genómica , Reproducción Asexuada/genética
2.
BMC Bioinformatics ; 24(1): 284, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452278

RESUMEN

BACKGROUND: Local assembly with short and long reads has proven to be very useful in many applications: reconstruction of the sequence of a locus of interest, gap-filling in draft assemblies, as well as alternative allele reconstruction of large Structural Variants. Whereas linked-read technologies have a great potential to assemble specific loci as they provide long-range information while maintaining the power and accuracy of short-read sequencing, there is a lack of local assembly tools for linked-read data. RESULTS: We present MTG-Link, a novel local assembly tool dedicated to linked-reads. The originality of the method lies in its read subsampling step which takes advantage of the barcode information contained in linked-reads mapped in flanking regions. We validated our approach on several datasets from different linked-read technologies. We show that MTG-Link is able to assemble successfully large sequences, up to dozens of Kb. We also demonstrate that the read subsampling step of MTG-Link considerably improves the local assembly of specific loci compared to other existing short-read local assembly tools. Furthermore, MTG-Link was able to fully characterize large insertion variants and deletion breakpoints in a human genome and to reconstruct dark regions in clinically-relevant human genes. It also improved the contiguity of a 1.3 Mb locus of biological interest in several individual genomes of the mimetic butterfly Heliconius numata. CONCLUSIONS: MTG-Link is an efficient local assembly tool designed for different linked-read sequencing technologies. MTG-Link source code is available at https://github.com/anne-gcd/MTG-Link and as a Bioconda package.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Humano
3.
BMC Biol ; 18(1): 89, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703219

RESUMEN

BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Microbiota-Huesped , Polydnaviridae/genética , Avispas/virología , Animales , Especificidad de la Especie , Secuenciación Completa del Genoma
4.
PLoS One ; 15(7): e0236429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730288

RESUMEN

The soilborne fungus Gaeumannomyces tritici (G. tritici) causes the take-all disease on wheat roots. Ambient pH has been shown to be critical in different steps of G. tritici life cycle such as survival in bulk soil, saprophytic growth, and pathogenicity on plants. There are however intra-specific variations and we previously found two types of G. tritici strains that grow preferentially either at acidic pH or at neutral/alkaline pH; gene expression involved in pH-signal transduction pathway and pathogenesis was differentially regulated in two strains representative of these types. To go deeper in the description of the genetic pathways and the understanding of this adaptative mechanism, transcriptome sequencing was achieved on two strains (PG6 and PG38) which displayed opposite growth profiles in two pH conditions (acidic and neutral). PG6, growing better at acidic pH, overexpressed in this condition genes related to cell proliferation. In contrast, PG38, which grew better at neutral pH, overexpressed in this condition genes involved in fatty acids and amino acid metabolisms, and genes potentially related to pathogenesis. This strain also expressed stress resistance mechanisms at both pH, to assert a convenient growth under various ambient pH conditions. These differences in metabolic pathway expression between strains at different pH might buffer the effect of field or soil variation in wheat fields, and explain the success of the pathogen.


Asunto(s)
Ascomicetos/genética , Transcriptoma/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genes Fúngicos , Concentración de Iones de Hidrógeno , Micelio/crecimiento & desarrollo , Especificidad de la Especie , Triticum
5.
BMC Genomics ; 21(1): 376, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471448

RESUMEN

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Asunto(s)
Áfidos/genética , Genómica , Avispas/genética , Animales , Áfidos/inmunología , Metilación de ADN/genética , Secuencia Rica en GC , Proteínas de Insectos/genética , Procesos de Determinación del Sexo/genética , Ponzoñas/genética , Avispas/inmunología
6.
Mol Biol Evol ; 37(9): 2601-2615, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32359152

RESUMEN

Ecology of insects is as wide as their diversity, which reflects their high capacity of adaptation in most of the environments of our planet. Aphids, with over 4,000 species, have developed a series of adaptations including a high phenotypic plasticity and the ability to feed on the phloem sap of plants, which is enriched in sugars derived from photosynthesis. Recent analyses of aphid genomes have indicated a high level of shared ancestral gene duplications that might represent a basis for genetic innovation and broad adaptations. In addition, there are a large number of recent, species-specific gene duplications whose role in adaptation remains poorly understood. Here, we tested whether duplicates specific to the pea aphid Acyrthosiphon pisum are related to genomic innovation by combining comparative genomics, transcriptomics, and chromatin accessibility analyses. Consistent with large levels of neofunctionalization, we found that most of the recent pairs of gene duplicates evolved asymmetrically, showing divergent patterns of positive selection and gene expression. Genes under selection involved a plethora of biological functions, suggesting that neofunctionalization and tissue specificity, among other evolutionary mechanisms, have orchestrated the evolution of recent paralogs in the pea aphid and may have facilitated host-symbiont cooperation. Our comprehensive phylogenomics analysis allowed us to tackle the history of duplicated genes to pave the road toward understanding the role of gene duplication in ecological adaptation.


Asunto(s)
Áfidos/genética , Evolución Biológica , Duplicación de Gen , Genoma de los Insectos , Selección Genética , Animales , Empaquetamiento del ADN , Expresión Génica
7.
Trends Genet ; 35(10): 781-782, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351816
8.
Epigenetics Chromatin ; 10: 30, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638443

RESUMEN

BACKGROUND: Heterogametic species display a differential number of sex chromosomes resulting in imbalanced transcription levels for these chromosomes between males and females. To correct this disequilibrium, dosage compensation mechanisms involving gene expression and chromatin accessibility regulations have emerged throughout evolution. In insects, these mechanisms have been extensively characterized only in Drosophila but not in insects of agronomical importance. Aphids are indeed major pests of a wide range of crops. Their remarkable ability to switch from asexual to sexual reproduction during their life cycle largely explains the economic losses they can cause. As heterogametic insects, male aphids are X0, while females (asexual and sexual) are XX. RESULTS: Here, we analyzed transcriptomic and open chromatin data obtained from whole male and female individuals to evaluate the putative existence of a dosage compensation mechanism involving differential chromatin accessibility of the pea aphid's X chromosome. Transcriptomic analyses first showed X/AA and XX/AA expression ratios for expressed genes close to 1 in males and females, respectively, suggesting dosage compensation in the pea aphid. Analyses of open chromatin data obtained by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) revealed a X chromosome chromatin accessibility globally and significantly higher in males than in females, while autosomes' chromatin accessibility is similar between sexes. Moreover, chromatin environment of X-linked genes displaying similar expression levels in males and females-and thus likely to be compensated-is significantly more accessible in males. CONCLUSIONS: Our results suggest the existence of an underlying epigenetic mechanism enhancing the X chromosome chromatin accessibility in males to allow X-linked gene dose correction between sexes in the pea aphid, similar to Drosophila. Our study gives new evidence into the comprehension of dosage compensation in link with chromatin biology in insects and newly in a major crop pest, taking benefits from both transcriptomic and open chromatin data.


Asunto(s)
Áfidos/genética , Compensación de Dosificación (Genética) , Evolución Molecular , Cromosoma X/genética , Animales , Cromatina/genética , Cromosomas de Insectos/genética , Epigénesis Genética , Femenino , Genes Ligados a X , Masculino
10.
Genome Biol ; 18(1): 27, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28190401

RESUMEN

BACKGROUND: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. RESULTS: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. CONCLUSIONS: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution.

11.
BMC Genomics ; 17: 219, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26968158

RESUMEN

BACKGROUND: Grapevine phylloxera, an insect related to true aphids, is a major historic pest of viticulture only controlled through the selection of resistant rootstocks or through quarantine regulations where grapevine is cultivated own-rooted. Transcriptomic data could help understand the bases of its original life-traits, including a striking case of polyphenism, with forms feeding on roots and forms feeding in leaf-galls. Comparisons with true aphids (for which complete genomes have been sequenced) should also allow to link differences in life-traits of the two groups with changes in gene repertoires or shifts in patterns of expression. RESULTS: We sequenced transcriptomes of the grapevine phylloxera (Illumina technology), choosing three life-stages (adults on roots or on leaf galls, and eggs) to cover a large catalogue of transcripts, and performed a de novo assembly. This resulted in 105,697 contigs, which were annotated: most contigs had a best blastx hit to the pea aphid (phylogenetically closest complete genome), while very few bacterial hits were recorded (except for Probionibacterium acnes). Coding sequences were predicted from this data set (17,372 sequences), revealing an extremely high AT-bias (at the third codon position). Differential expression (DE) analysis among root-feeding and gall-feeding showed that i) the root-feeding form displayed a much larger number of differentially expressed transcripts ii) root-feeding biased genes were enriched in some categories, for example cuticular proteins and genes associated with cell-cell signaling iii) leaf-galling-biased genes were enriched in genes associated with the nucleus and DNA-replication, suggesting a metabolism more oriented towards fast and active multiplication. We also identified a gene family with a very high expression level (copies totaling nearly 10% of the reads) in the grapevine phylloxera (both in root and leaf galling forms), but usually expressed at very low levels in true aphids (except in sexual oviparous females). These transcripts thus appear to be associated with oviparity. CONCLUSIONS: Our study illustrated major intraspecific changes in transcriptome profiles, related with different life-styles (and the feeding on roots versus in leaf-galls). At a different scale, we could also illustrate one major shift in expression levels associated with changes in life-traits that occurred along evolution and that respectively characterize (strictly oviparous) grapevine phylloxera and (mostly viviparous) true aphids.


Asunto(s)
Conducta Alimentaria , Insectos/genética , Transcriptoma , Vitis , Animales , Mapeo Contig , Femenino , Genes de Insecto , Insectos/fisiología , Familia de Multigenes , Oviparidad , Filogenia
13.
PLoS Genet ; 10(12): e1004838, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473828

RESUMEN

Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼ 300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.


Asunto(s)
Áfidos/genética , Transferencia de Gen Horizontal , Pisum sativum/parasitología , Reproducción Asexuada/genética , Animales , Áfidos/fisiología , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Genética de Población , Masculino , Partenogénesis/genética , Sitios de Carácter Cuantitativo , Reproducción/genética
14.
BMC Genomics ; 15: 490, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25047861

RESUMEN

Why is it needed to develop system biology initiatives such as ENCODE on non-model organisms?


Asunto(s)
Evolución Biológica , Genómica , Bases de Datos Genéticas
15.
PLoS One ; 9(5): e96669, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801634

RESUMEN

Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumß1 expressions levels, whereas Apisumß2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.


Asunto(s)
Áfidos/efectos de los fármacos , Áfidos/metabolismo , Insecticidas/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Sitios de Unión , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Guanidinas/química , Guanidinas/metabolismo , Guanidinas/toxicidad , Imidazoles/química , Imidazoles/metabolismo , Imidazoles/toxicidad , Insecticidas/química , Insecticidas/toxicidad , Larva/efectos de los fármacos , Larva/metabolismo , Neonicotinoides , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Nitrocompuestos/toxicidad , Oxazinas/química , Oxazinas/metabolismo , Oxazinas/toxicidad , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/química , Espectrometría de Masas en Tándem , Tiametoxam , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/toxicidad
16.
G3 (Bethesda) ; 4(4): 657-67, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24531730

RESUMEN

In aphids, clonal individuals can show distinct morphologic traits in response to environmental cues. Such phenotypic plasticity cannot be studied with classical genetic model organisms such as Caenorhabditis elegans or Drosophila melanogaster. The genetic basis of this biological process remain unknown, as mutations affecting this process are not available in aphids. Here, we describe a protocol to treat third-stage larvae with an alkylating mutagen, ethyl methanesulfonate (EMS), to generate random mutations within the Acyrthosiphon pisum genome. We found that even low concentrations of EMS were toxic for two genotypes of A. pisum. Mutagenesis efficiency was nevertheless assessed by estimating the occurrence of mutational events on the X chromosome. Indeed, any lethal mutation on the X-chromosome would kill males that are haploid on the X so that we used the proportion of males as an estimation of mutagenesis efficacy. We could assess a putative mutation rate of 0.4 per X-chromosome at 10 mM of EMS. We then applied this protocol to perform a small-scale mutagenesis on parthenogenetic individuals, which were screened for defects in their ability to produce sexual individuals in response to photoperiod shortening. We found one mutant line showing a reproducible altered photoperiodic response with a reduced production of males and the appearance of aberrant winged males (wing atrophy, alteration of legs morphology). This mutation appeared to be stable because it could be transmitted over several generations of parthenogenetic individuals. To our knowledge, this study represents the first example of an EMS-generated aphid mutant.


Asunto(s)
Áfidos/efectos de los fármacos , Metanosulfonato de Etilo/toxicidad , Animales , Áfidos/genética , Áfidos/crecimiento & desarrollo , Femenino , Genoma de los Insectos , Genotipo , Larva/efectos de los fármacos , Masculino , Mutagénesis , Alas de Animales/anomalías , Cromosoma X/efectos de los fármacos
17.
Curr Opin Insect Sci ; 1: v-vi, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32846734
18.
PLoS Genet ; 9(8): e1003690, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950732

RESUMEN

Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.


Asunto(s)
Áfidos/genética , Evolución Biológica , Cromosomas Sexuales , Cromosoma X/genética , Alelos , Animales , Áfidos/fisiología , Femenino , Genoma de los Insectos , Masculino , Mutación , Reproducción Asexuada/genética
19.
BMC Evol Biol ; 12: 216, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23145470

RESUMEN

BACKGROUND: The sequencing of the genome of the pea aphid Acyrthosiphon pisum revealed an unusual expansion of the miRNA machinery, with two argonaute-1, two dicer-1 and four pasha gene copies. In this report, we have undertaken a deeper evolutionary analysis of the phylogenetic timing of these gene duplications and of the associated selective pressures by sequencing the two copies of ago-1 and dcr-1 in different aphid species of the subfamily Aphidinae. We have also carried out an analysis of the expression of both copies of ago-1 and dcr-1 by semi-quantitative PCR in different morphs of the pea aphid life cycle. RESULTS: The analysis has shown that the duplication of ago-1 occurred in an ancestor of the subfamily Aphidinae while the duplication of dcr-1 appears to be more recent. Besides, it has confirmed a pattern of one conserved copy and one accelerated copy for both genes, and has revealed the action of positive selection on several regions of the fast-evolving ago-1b. On the other hand, the semi-quantitative PCR experiments have revealed a differential expression of these genes between the morphs of the parthenogenetic and the sexual phases of Acyrthosiphon pisum. CONCLUSIONS: The discovery of these gene duplications in the miRNA machinery of aphids opens new perspectives of research about the regulation of gene expression in these insects. Accelerated evolution, positive selection and differential expression affecting some of the copies of these genes suggests the possibility of a neofunctionalization of these duplicates, which might play a role in the display of the striking phenotypic plasticity of aphids.


Asunto(s)
Áfidos/genética , Duplicación de Gen , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , MicroARNs/genética , Empalme Alternativo , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/genética , Evolución Molecular , Femenino , Conversión Génica , Proteínas de Insectos/clasificación , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Reproducción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Análisis de Secuencia de ADN
20.
J Insect Physiol ; 58(12): 1517-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22967755

RESUMEN

Aphids are among the rare organisms that can change their reproductive mode across their life cycle. During spring and summer they reproduce clonally and efficiently by parthenogenesis. At the end of summer aphids perceive the shortening of day length which triggers the production of sexual individuals - males and oviparous females - that will mate and lay overwintering cold-resistant eggs. Recent large scale transcriptomic studies allowed the discovery of transcripts and functions such as nervous and hormonal signaling involved in the early steps of detection and transduction of the photoperiodic signal. Nevertheless these experiments were performed under controlled conditions when the photoperiod was the only varying parameter. To characterize the response of aphids under natural conditions, aphids were reared outdoor both in summer and autumn and material was collected to compare their transcriptomic profile using a cDNA microarray containing around 7000 transcripts. Statistical analyses revealed that close to 5% of these transcripts (367) were differentially expressed at two developmental stages of the process in response to the autumnal environmental conditions. Functional classification of regulated transcripts confirmed the putative contribution of the neuro-endocrine system in the process. Furthermore, these experiments revealed the regulation of transcripts involved in juvenile hormone synthesis and signaling pathway, confirming the key role played by these molecules in the reproductive mode switch. Aphids placed under outdoor conditions were confronted to a range of abiotic factors such as temperature fluctuations which was confirmed by the differential expression of an important proportion of heat shock protein transcripts between the two seasons. Finally, this original approach completed the understanding of genetic programs involved in aphid phenotypic plasticity.


Asunto(s)
Áfidos/metabolismo , Partenogénesis , Fotoperiodo , Animales , Áfidos/genética , Femenino , Perfilación de la Expresión Génica , Masculino , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...