Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 187, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300345

RESUMEN

Cyclic ß-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic ß-1,2-glucans (CßGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that ß-glucosidase-resistant compounds are produced by TiCGSCy with linear ß-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CßGs. Next, action pattern analyses using ß-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate ß-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CßGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of ß-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic ß-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.


Asunto(s)
Glucanos , Glicósido Hidrolasas , beta-Glucanos , Ciclización , Catálisis
2.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749514

RESUMEN

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Senescencia Celular , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Interleucina-33/metabolismo , Ratones , Obesidad/complicaciones , Obesidad/metabolismo , Microambiente Tumoral
3.
J Biol Chem ; 298(3): 101606, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065074

RESUMEN

The IALB_1185 protein, which is encoded in the gene cluster for endo-ß-1,2-glucanase homologs in the genome of Ignavibacterium album, is a glycoside hydrolase family (GH) 35 protein. However, most known GH35 enzymes are ß-galactosidases, which is inconsistent with the components of this gene cluster. Thus, IALB_1185 is expected to possess novel enzymatic properties. Here, we showed using recombinant IALB_1185 that this protein has glycosyltransferase activity toward ß-1,2-glucooligosaccharides, and that the kinetic parameters for ß-1,2-glucooligosaccharides are not within the ranges for general GH enzymes. When various aryl- and alkyl-glucosides were used as acceptors, glycosyltransfer products derived from these acceptors were subsequently detected. Kinetic analysis further revealed that the enzyme has wide aglycone specificity regardless of the anomer, and that the ß-1,2-linked glucose dimer sophorose is an appropriate donor. In the complex of wild-type IALB_1185 with sophorose, the electron density of sophorose was clearly observed at subsites -1 and +1, whereas in the E343Q mutant-sophorose complex, the electron density of sophorose was clearly observed at subsites +1 and +2. This observation suggests that binding at subsites -1 and +2 competes through Glu102, which is consistent with the preference for sophorose as a donor and unsuitability of ß-1,2-glucooligosaccharides as acceptors. A pliable hydrophobic pocket that can accommodate various aglycone moieties was also observed in the complex structures with various glucosides. Overall, our biochemical and structural data are indicative of a novel enzymatic reaction. We propose that IALB_1185 be redefined ß-1,2-glucooligosaccharide:d-glucoside ß-d-glucosyltransferase as a systematic name and ß-1,2-glucosyltransferase as an accepted name.


Asunto(s)
Glucósidos , Glicosiltransferasas , Glucósidos/química , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Cinética , Especificidad por Sustrato
4.
Anal Biochem ; 632: 114366, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509443

RESUMEN

ß-(1 â†’ 2)-Glucans can be synthesized by 1,2-ß-oligoglucan phosphorylase using ß-(1 â†’ 2)-glucooligosaccharides as acceptors and α-d-glucose 1-phosphate as a donor. Using phosphorolysis of sucrose as a source of α-d-glucose 1-phosphate, we generated ß-(1 â†’ 2)-glucans with degrees of polymerization (DPs) up to approximately 280. Average DPs up to approximately 1000 were obtained using ß-(1 â†’ 2)-glucan with average DP of 160 as an acceptor and pure α-d-glucose 1-phosphate as a donor. A colorimetric assay of the ß-glucosidase activity against the ß-(1 â†’ 2)-glucan products was used to determine their DPs.


Asunto(s)
Glucanos/metabolismo , beta-Glucosidasa/metabolismo , Glucanos/química , Polimerizacion
5.
Biosci Biotechnol Biochem ; 83(10): 1867-1874, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31189457

RESUMEN

A large amount of ß-1,2-glucan was produced enzymatically from quite a small amount of sophorose as an acceptor material through three synthesis steps using a sucrose phosphorylase and a 1,2-ß-oligoglucan phosphorylase. The first synthesis step was performed in a 200 µL of a reaction solution containing 5 mM sophorose and 1.0 M sucrose. ß-1,2-Glucan in a part of the resultant solution was hydrolyzed to ß-1,2-glucooligosaccharides by a ß-1,2-glucanase. The second synthesis was performed in 25 times the volume for the first synthesis. The hydrolysate solution (1% volume of the reaction solution) was used as an acceptor. After treatment with the ß-1,2-glucanase again, the third synthesis was performed 200 times the volume for the second synthesis (1 L). The reaction yield of ß-1,2-glucan at each synthesis was 93%, 76% and 91%. Finally, more than 140 g of ß-1,2-glucan was synthesized using approximately 20 µg of sophorose as the starting acceptor material. Abbreviations: DPs: degrees of polymerization; SOGP: 1,2-ß-oligoglucan phosphorylase; Sopns: ß-1,2-glucooligosaccharides with DP of n; Glc1P: α-glucose 1-phosphate; SucP: sucrose phosphorylase from Bifidobacterium longum subsp. longum; SGL: ß-1,2-glucanase; CaSGL: Chy400_4174 protein; TLC: thin layer chromatography; GOPOD: glucose oxidase/peroxidase; PGM: phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase.


Asunto(s)
Glucanos/química , beta-Glucanos/síntesis química , Glucosiltransferasas/química , Hidrólisis , Cinética , Fosfatos/química , Especificidad por Sustrato
6.
Sci Rep ; 9(1): 9283, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243315

RESUMEN

Chloramphenicol (Cm) is a broad-spectrum classic antibiotic active against prokaryotic organisms. However, Cm has severe side effects in eukaryotes of which the cause remains unknown. The plant pathogenic fungus Magnaporthe oryzae, which causes rice blast, forms an appressorium to infect the host cell via single-cell differentiation. Chloramphenicol specifically inhibits appressorium formation, which indicates that Cm has a novel molecular target (or targets) in the rice blast fungus. Application of the T7 phage display method inferred that MoDullard, a Ser/Thr-protein phosphatase, may be a target of Cm. In animals Dullard functions in cell differentiation and protein synthesis, but in fungi its role is poorly understood. In vivo and in vitro analyses showed that MoDullard is required for appressorium formation, and that Cm can bind to and inhibit MoDullard function. Given that human phosphatase CTDSP1 complemented the MoDullard function during appressorium formation by M. oryzae, CTDSP1 may be a novel molecular target of Cm in eukaryotes.


Asunto(s)
Cloranfenicol/farmacología , Magnaporthe/efectos de los fármacos , Oryza/microbiología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Antifúngicos/farmacología , Bacteriófago T7 , Diferenciación Celular , ADN de Hongos , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Magnaporthe/enzimología , Mutación , Biblioteca de Péptidos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/microbiología , Plásmidos/genética , ARN de Hongos
7.
J Biol Chem ; 294(19): 7942-7965, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926603

RESUMEN

endo-ß-1,2-Glucanase (SGL) is an enzyme that hydrolyzes ß-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic ß-1,2-glucans to sophorose (Glc-ß-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified ß-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a ß-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of ß-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Microbiología del Suelo , Talaromyces/enzimología , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Biochemistry ; 57(37): 5388-5406, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30149697

RESUMEN

d-Lactate dehydrogenases (d-LDHs) from Fusobacterium nucleatum (FnLDH) and Escherichia coli (EcLDH) exhibit positive cooperativity in substrate binding, and the Pseudomonas aeruginosa enzyme (PaLDH) shows negatively cooperative substrate binding. The apo and ternary complex structures of FnLDH and PaLDH have been determined together with the apo-EcLDH structure. The three enzymes consistently form homotetrameric structures with three symmetric axes, the P-, Q-, and R-axes, unlike Lactobacillus d-LDHs, P-axis-related dimeric enzymes, although apo-FnLDH and EcLDH form asymmetric and distorted quaternary structures. The tetrameric structure allows apo-FnLDH and EcLDH to form wide intersubunit contact surfaces between the opened catalytic domains of the two Q-axis-related subunits in coordination with their asymmetric and distorted quaternary structures. These contact surfaces comprise intersubunit hydrogen bonds and hydrophobic interactions and likely prevent the domain closure motion during initial substrate binding. In contrast, apo-PaLDH possesses a highly symmetrical quaternary structure and partially closed catalytic domains that are favorable for initial substrate binding and forms virtually no intersubunit contact surface between the catalytic domains, which present their negatively charged surfaces to each other at the subunit interface. Complex FnLDH and PaLDH possess highly symmetrical quaternary structures with closed forms of the catalytic domains, which are separate from each other at the subunit interface. Structure-based mutations successfully converted the three enzymes to their dimeric forms, which exhibited no significant cooperativity in substrate binding. These observations indicate that the three enzymes undergo typical sequential allosteric transitions to exhibit their distinctive allosteric functions through the tetrameric structures.


Asunto(s)
Escherichia coli/enzimología , Fusobacterium nucleatum/enzimología , Lactato Deshidrogenasas/química , Pseudomonas aeruginosa/enzimología , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia
9.
Anal Biochem ; 560: 1-6, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30149026

RESUMEN

A colorimetric determination method measuring the reducing ends of sugars is usually used for quantitative evaluation of polysaccharide-degrading activity of endo-type enzymes. However, no appropriate colorimetric method has been established for enzymatic assay of ß-1,2-glucanases, which produce ß-1,2-glucooligosaccharides from ß-1,2-glucans. The Anthon-MBTH method has been potentially the most adaptable for color development of ß-1,2-glucooligosaccharides among various known colorimetric methods for detecting the reducing power of oligosaccharides, since the difference between sophorose and other ß-1,2-glucooligosaccharides in absorbance is relatively small. Almost the same color development was obtained for ß-1,2-glucooligosaccharides when the heating time with the Anthon-MBTH method was changed. The kind of base and concentration of dithiothreitol did not markedly affect the color development. Most buffer components, salts and a chelating reagent used for usual enzymatic experiments did not inhibit color development. Furthermore, assay was performed successfully for a ß-1,2-glucanase using the modified MBTH method.


Asunto(s)
Proteínas Bacterianas/química , Pruebas de Enzimas/métodos , Glicósido Hidrolasas/química , beta-Glucanos/análisis , Bacterias/enzimología , Bacterias/metabolismo , Benzotiazoles/química , Chlorella/enzimología , Chlorella/metabolismo , Colorimetría/métodos , Glucanos/química , Hidrazonas/química , Especificidad por Sustrato
10.
Carbohydr Res ; 468: 13-22, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30121414

RESUMEN

Sophorose (Sop2) is known as a powerful inducer of cellulases in Trichoderma reesei, and in recent years 1,2-ß-D-oligoglucan phosphorylase (SOGP) has been found to use Sop2 in synthetic reactions. From the structure of the complex of SOGP with Sop2, it was predicted that both the 3-hydroxy group at the reducing end glucose moiety of Sop2 and the 3'-hydroxy group at the non-reducing end glucose moiety of Sop2 were important for substrate recognition. In this study, three kinds of 3- and/or 3'-deoxy-Sop2 derivatives were synthesized to evaluate this mechanism. The deoxygenation of the 3-hydroxy group of D-glucopyranose derivative was performed by radical reduction using a toluoyl group as a leaving group. The utilization of a toluoyl group that plays two roles (a leaving group for the deoxygenation and a protecting group for a hydroxy group) resulted in efficient syntheses of the three target compounds. The NMR spectra of the two final compounds (3-deoxy- and 3,3'-dideoxy-Sop2) suggested that the glucose moiety of the reducing end of Sop2 can easily take on a furanose structure (five-membered ring structure) by deoxygenation of the 3-hydroxy group of Sop2. In addition, the ratio of the five- and six-membered ring structures changed depending on the temperature. The SOGPs exhibited remarkably lower specific activity for 3'-deoxy- and 3,3'-dideoxy-Sop2, indicating that the 3'-hydroxy group of Sop2 is important for substrate recognition by SOGPs.


Asunto(s)
Glucanos/química , Glucanos/síntesis química , Fosforilasas/metabolismo , Secuencia de Aminoácidos , Inducción Enzimática/efectos de los fármacos , Glucanos/farmacología , Modelos Moleculares , Fosforilasas/biosíntesis , Fosforilasas/química , Conformación Proteica , Estereoisomerismo , Trichoderma/enzimología
11.
Biochemistry ; 57(26): 3849-3860, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29763309

RESUMEN

ß-1,2-Glucan is a polysaccharide produced mainly by some Gram-negative bacteria as a symbiosis and infectious factor. We recently identified endo-ß-1,2-glucanase from Chitinophaga pinensis ( CpSGL) as an enzyme comprising a new family. Here, we report the characteristics and crystal structure of a CpSGL homologue from Parabacteroides distasonis, an intestinal bacterium (BDI_3064 protein), which exhibits distinctive properties of known ß-1,2-glucan-degrading enzymes. BDI_3064 hydrolyzed linear ß-1,2-glucan and ß-1,2-glucooligosaccharides with degrees of polymerization (DPs) of ≥4 to produce sophorose specifically but did not hydrolyze cyclic ß-1,2-glucan. This result indicates that BDI_3064 is a new exo-type enzyme. BDI_3064 also produced sophorose from ß-1,2-glucooligosaccharide analogues that have a modified reducing end, indicating that BDI_3064 acts on its substrates from the nonreducing end. The crystal structure showed that BDI_3064 possesses additional N-terminal domains 1 and 2, unlike CpSGL. Superimposition of BDI_3064 and CpSGL complexed with ligands showed that R93 in domain 1 overlapped subsite -3 in CpSGL. Docking analysis involving a ß-1,2-glucooligosaccharide with DP4 showed that R93 completely blocks the nonreducing end of the docked ß-1,2-glucooligosaccharide. This indicates that BDI_3064 employs a distinct mechanism of recognition at the nonreducing end of substrates to act as an exo-type enzyme. Thus, we propose 2-ß-d-glucooligosaccharide sophorohydrolase (nonreducing end) as a systematic name for BDI_3064.


Asunto(s)
Proteínas Bacterianas/química , Bacteroidetes/enzimología , Glucosidasas/química , Simulación del Acoplamiento Molecular , Oligosacáridos/química , beta-Glucanos/química , Cristalografía por Rayos X , Dominios Proteicos
12.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29678880

RESUMEN

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Listeria/metabolismo , Polisacáridos Bacterianos/metabolismo , beta-Glucanos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Listeria/química , Simulación de Dinámica Molecular , Polisacáridos Bacterianos/química , Unión Proteica , Conformación Proteica , Termodinámica , beta-Glucanos/química
13.
FEBS Lett ; 591(23): 3926-3936, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29131329

RESUMEN

BT_3567 protein, a putative ß-glucosidase from Bacteroides thetaiotaomicron, exhibits higher activity toward Sop3-5 (Sopn , n: degree of polymerization of ß-1,2-glucooligosaccharides) than toward Sop2 , unlike a known ß-glucosidase from Listeria innocua which predominantly prefers Sop2 . In the complex structure determined by soaking of a D286N mutant crystal with Sop4 , a Sop3 moiety was observed at subsites -1 to +2. The glucose moiety at subsite +2 forms a hydrogen bond with Asn81, which is replaced with Gly in the L. innocua ß-glucosidase. The Km values of the N81G mutant for Sop3-5 are much higher than those of the wild-type, suggesting that Asn81 contributes to the binding to substrates longer than Sop3 .


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/enzimología , Oligosacáridos/metabolismo , beta-Glucosidasa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Dominio Catalítico , Cristalografía por Rayos X , Genes Bacterianos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , beta-Glucosidasa/química , beta-Glucosidasa/genética
14.
Sci Rep ; 7(1): 9697, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852173

RESUMEN

The rice blast fungus Magnaporthe oryzae differentiates a specialized infection structure called an appressorium to invade rice cells. In this report, we show that CBP1, which encodes a chitin-deacetylase, is involved in the induction phase of appressorium differentiation. We demonstrate that the enzymatic activity of Cbp1 is critical for appressorium formation. M. oryzae has six CDA homologues in addition to Cbp1, but none of these are indispensable for appressorium formation. We observed chitosan localization at the fungal cell wall using OGA488. This observation suggests that Cbp1-catalysed conversion of chitin into chitosan occurs at the cell wall of germ tubes during appressorium differentiation by M. oryzae. Taken together, our results provide evidence that the chitin deacetylase activity of Cbp1 is necessary for appressorium formation.


Asunto(s)
Amidohidrolasas/metabolismo , Magnaporthe/enzimología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Quitina/metabolismo , Activación Enzimática , Prueba de Complementación Genética , Interacciones Huésped-Patógeno , Magnaporthe/metabolismo , Mutación
15.
Biochem Biophys Res Commun ; 486(3): 665-670, 2017 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-28327357

RESUMEN

Enterococcus faecium NAD-dependent d-mandelate dehydrogenase (d-ManDH) belongs to a ketopantoate reductase (KPR)-related d-2-hydroxyacid dehydrogenase family, and exhibits broad substrate specificity toward bulky hydrophobic 2-ketoacids, preferring C3-branched substrates. The ternary complex structure of d-ManDH with NADH and anilino(oxo)acetate (AOA) revealed that the substrate binding induces a shear motion of the N-terminal domain along the C-terminal domain, following the hinge motion induced by the NADH binding, and allows the bound NADH molecule to form favorable interactions with a 2-ketoacid substrate. d-ManDH possesses a sufficiently wide pocket that accommodates the C3 branched side chains of substrates like KPR, but unlike the pocket of KPR, the pocket of d-ManDH comprises an entirely hydrophobic surface and an expanded space, in which the AOA benzene is accommodated. The expanded space mostly comprises a mobile loop structure, which likely modulates the shape and size of the space depending on the substrate.


Asunto(s)
Acetatos/química , Oxidorreductasas de Alcohol/química , Compuestos de Anilina/química , Proteínas Bacterianas/química , Enterococcus faecium/química , NAD/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Enterococcus faecium/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NAD/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato , Termodinámica
16.
J Biol Chem ; 292(18): 7487-7506, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28270506

RESUMEN

ß-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite ß-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear ß-1,2-glucan. To this end, we purified an endo-ß-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-ß-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear ß-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-ß-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other ß-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.


Asunto(s)
Proteínas Bacterianas/química , Bacteroidetes/enzimología , Celulasa/química , Proteínas Bacterianas/aislamiento & purificación , Catálisis , Dominio Catalítico , Celulasa/aislamiento & purificación , Cristalografía por Rayos X
17.
Sci Rep ; 7: 42671, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198470

RESUMEN

Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on ß-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-ß-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique ß-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites -1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on ß-1,2-glucooligosaccharides.


Asunto(s)
Clostridium/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Fenómenos Mecánicos , Secuencia de Aminoácidos , Sitios de Unión , Fenómenos Bioquímicos , Dominio Catalítico , Enlace de Hidrógeno , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Adv Exp Med Biol ; 925: 117-145, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27815924

RESUMEN

Many bacterial L-lactate dehydrogenases (LDH) are allosteric enzymes, and usually activated by fructose 1,6-bisphosphate (FBP) and often also by substrate pyruvate. The active and inactive state structures demonstrate that Thermus caldophilus, Lactobacillus casei, and Bifidobacterium longum LDHs consistently undergo allosteric transition according to Monod-Wyman-Changeux model, where the active (R) and inactive (T) states of the enzymes coexist in an allosteric equilibrium (pre-existing equilibrium) independently of allosteric effectors. The three enzymes consistently take on open and closed conformations of the homotetramers for the T and R states, coupling the quaternary structural changes with the structural changes in binding sites for substrate and FBP though tertiary structural changes. Nevertheless, the three enzymes undergo markedly different structural changes from one another, indicating that there is a high variety in the allosteric machineries of bacterial LDHs. L. casei LDH undergoes the largest quaternary structural change in the three enzymes, and regulates its catalytic activity though a large linkage frame for allosteric motion. In contrast, T. caldophilus LDH exhibits the simplest allosteric motion in the three enzymes, involving a simple mobile structural core for the allosteric motion. TcLDH likely mediates its allosteric equilibrium mostly through electrostatic repulsion within the protein molecule, providing an insight for regulation machineries in bacterial allosteric LDHs.


Asunto(s)
Proteínas Bacterianas/química , Bifidobacterium longum/enzimología , Fructosadifosfatos/química , L-Lactato Deshidrogenasa/química , Lacticaseibacillus casei/enzimología , Ácido Pirúvico/química , Thermus/enzimología , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium longum/química , Bifidobacterium longum/genética , Sitios de Unión , Fructosadifosfatos/metabolismo , Expresión Génica , Cinética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Lacticaseibacillus casei/química , Lacticaseibacillus casei/genética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ácido Pirúvico/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad , Especificidad por Sustrato , Thermus/química , Thermus/genética
19.
PLoS One ; 11(2): e0148870, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26886583

RESUMEN

Despite the presence of ß-1,2-glucan in nature, few ß-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-ß-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 ß-glucosidase, we hypothesized that Lin1840 is also involved in ß-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-ß-1,2-Glc) among ß-1,2-glucooligosaccharides, suggesting that Lin1840 is a ß-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (ß-1,3), but not cellobiose (ß-1,4) or gentiobiose (ß-1,6) among ß-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into ß-1,2-glucooligosaccharide recognition by ß-glucosidase.


Asunto(s)
Listeria/metabolismo , beta-Glucanos/metabolismo , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Cinética , Ligandos , Listeria/enzimología , Modelos Moleculares , Proteínas Mutantes/química , Oligosacáridos/metabolismo , Conformación Proteica , Especificidad por Sustrato , beta-Glucosidasa/antagonistas & inhibidores
20.
AMB Express ; 4: 76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401076

RESUMEN

NAD-dependent d-lactate dehydrogenases (d-LDHs) reduce pyruvate into d-lactate with oxidation of NADH into NAD(+). Although non-allosteric d-LDHs from Lactobacilli have been extensively studied, the catalytic properties of allosteric d-LDHs from Gram-negative bacteria except for Escherichia coli remain unknown. We characterized the catalytic properties of d-LDHs from three Gram-negative bacteria, Fusobacterium nucleatum (FNLDH), Pseudomonas aeruginosa (PALDH), and E. coli (ECLDH) to gain an insight into allosteric mechanism of d-LDHs. While PALDH and ECLDH exhibited narrow substrate specificities toward pyruvate like usual d-LDHs, FNLDH exhibited a broad substrate specificity toward hydrophobic 2-ketoacids such as 2-ketobutyrate and 2-ketovalerate, the former of which gave a 2-fold higher k cat/S0.5 value than pyruvate. Whereas the three enzymes consistently showed hyperbolic shaped pyruvate saturation curves below pH 6.5, FNLDH and ECLDH, and PALDH showed marked positive and negative cooperativity, respectively, in the pyruvate saturation curves above pH 7.5. Oxamate inhibited the catalytic reactions of FNLDH competitively with pyruvate, and the PALDH reaction in a mixed manner at pH 7.0, but markedly enhanced the reactions of the two enzymes at low concentration through canceling of the apparent homotropic cooperativity at pH 8.0, although it constantly inhibited the ECLDH reaction. Fructose 1,6-bisphosphate and certain divalent metal ions such as Mg(2+) also markedly enhanced the reactions of FNLDH and PALDH, but none of them enhanced the reaction of ECLDH. Thus, our study demonstrates that bacterial d-LDHs have highly divergent allosteric and catalytic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...