Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(12): e23043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125499

RESUMEN

Rapid urban sprawl adversely impacts the local climate and the ecosystem components. Islamabad, one of South Asia's green and environment-friendly capitals, has experienced major Land Use Land Cover (LULC) changes over the past three decades consequently, elevating the seasonal and annual Land Surface Temperature (LST) in planned and unplanned urban areas. The focus of this study was to quantify the fluctuations in LULC and LST in planned and unplanned urban areas using Landsat data and Machine Learning algorithms involving the Support Vector Machine (SVM) over the 1990-2020 data period. Moreover, hybrid Cellular Automata-Markov (CA-Markov) and Artificial Neural Network (ANN) models were employed to project the future changes in LULC and annual LST, respectively, for the years 2035 and 2050. The findings of the study reveal a distinct difference in seasonal and annual LST in planned and unplanned areas. Results showed an increase of ∼22 % in the built-up area but vegetation and bare soil decreased by ∼10 % and ∼12 %, respectively. Built-up land showed a maximum annual mean LST followed by bare-soil and vegetative surfaces. Seasonal analysis showed that summer months experience the highest LST, followed by spring, autumn and winter. Future projections revealed that the built-up areas (∼27 % in 2020) are likely to increase to ∼37 % and ∼50 %, and the areas under the highest annual mean LST class i.e., ≥28 °C are likely to increase to ∼19 % and ∼21 % in planned, and ∼38 % and ∼42 % in unplanned urban areas for the years 2035 and 2050, respectively. Planned areas have better temperature control with urban green spaces, and controlled infrastructure. The Capital Development Authority of Islamabad may be advised to control the expansion of built-up areas, grow urban forests, and thus mitigate the possible Urban Heat Island (UHI) effect.

2.
Heliyon ; 9(2): e13322, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36825192

RESUMEN

Land Surface Temperature (LST) affects exchange of energy between earth surface and atmosphere which is important for studying environmental changes. However, research on the relationship between LST, Land Use Land Cover (LULC), and Normalized Difference Vegetation Index (NDVI) with topographic elements in the lower Himalayan region has not been done. Therefore, the present study explored the relationship between LST and NDVI, and LULC types with topographic elements in the lower Himalayan region of Pakistan. The study area was divided into North-South, West-East, North-West to South-East and North-East to South-East directions using ArcMap 3D analysis. The current study used Landsat 8 (OLI/TIRS) data from May 2021 for LULC and LST analysis in the study area. The LST data was obtained from the thermal band of Landsat 8 (TIRS), while the LULC of the study areas was classified using the Maximum Likelihood Classification (MLC) method utilizing Landsat 8 (OLI) data. TIRS collects data for two narrow spectral bands (B10 and B11) with spectral wavelength of 10.6 µm-12.51 µm in the thermal region formerly covered by one wide spectral band (B6) on Landsat 4-7. With 12-bit data products, TIRS data is available in radiometric, geometric, and terrain-corrected file format. The effect of elevation on LST was assessed using LST and elevation data obtained from the USGS website. The LST across LULC types with sunny and shady slopes was analyzed to assess the influence of slope directions. The relationship of LST with elevation and NDVI was examined using correlation analysis. The results indicated that LST decreased from North-South and South-East, while increasing from North-East and South-West directions. The correlation coefficient between LST and elevation was negative, with an R-value of -0.51. The NDVI findings with elevation showed that NDVI increases with an increase in elevation. Zonal analysis of LST for different LULC types showed that built-up and bare soil had the highest mean LST, which was 35.76 °C and 28.08 °C, respectively, followed by agriculture, vegetation, and water bodies. The mean LST difference between sunny and shady slopes was 1.02 °C. The correlation between NDVI and LST was negative for all LULC types except the water body. This study findings can be used to ensure sustainable urban development and minimize urban heat island effects by providing effective guidelines for urban planners, policymakers, and respective authorities in the Lower Himalayan region. The current thermal remote sensing findings can be used to model energy fluxes and surface processes in the study area.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36429397

RESUMEN

The contamination of toxic trace metals in the food chain is one of the major threats to human health. Milk is part of a balanced diet, which is essential for proper growth, but the ingestion of contaminated milk may cause chronic health disorders. The present study is focused on the assessment of contamination of toxic trace metals in buffalo milk and the associated health risks to the consumers of Abbottabad, Pakistan. Standard analytical methods were employed to quantify the metal contents in the milk samples collected from various shops and homes in the months from June 2021 to October 2021. Health risk assessment was accomplished by computing estimated daily intake (EDI), health risk index (HRI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR). On a comparative basis, the mean concentration of Cr was found to be highest in both shop and home milk samples (101.3 ± 45.33 and 54.11 ± 24.20 mg/L, respectively), followed by Pb, Zn, Ni, and Cd levels. In buffalo milk collected from homes, the highest concentration of the metals was found in October, followed by July, September, June, and August. In shop milk, the increasing trend of metal contents was July > October > September > June > August. Significantly strong positive relationships were noted between the metal concentrations in the milk samples. Multivariate cluster analysis and principal component analysis exhibited significant anthropogenic contributions of the metals in buffalo milk. Mostly, the EDI and HRI values were exceeding the recommended limits; however, THQ, HI, and TCR showed that the intake of these metals through milk consumption was within the safe limit and thus revealed no significant carcinogenic or non-carcinogenic risks to the consumers. It is high time to ensure the continuous monitoring of organic/inorganic toxins in the milk and concerned authorities should take strict measures to control the contamination of milk and other food products.


Asunto(s)
Metales Pesados , Oligoelementos , Animales , Humanos , Leche/química , Búfalos , Metales Pesados/análisis , Oligoelementos/análisis , Medición de Riesgo , Receptores de Antígenos de Linfocitos T
4.
Environ Monit Assess ; 194(2): 120, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072823

RESUMEN

Land use land cover (LULC) change has become a major concern for biodiversity, ecosystem alteration, and modifying the climatic pattern especially land surface temperature (LST). The present study assessed past and predicted future LULC and LST change in the Swabi District of Pakistan. LULC maps were generated from satellite data for years 1987, 2002, and 2017 using supervised classification. Mean LST and its areal change were estimated for different LULC classes from thermal bands of satellite images. LULC and LST were projected for the year 2047 using the integrated weighted evidence-cellular automata (WE-CA) model and a regression equation developed in this study, respectively. LULC change revealed an increase of > 5% in the built-up while a decrease in the agricultural area by ~ 9%. There was an increase of ~ 63% area in the LST class ≥ 27 °C which may create urban heat island (UHI). Simulation results indicated that the built-up area will further be increased by ~ 3% until 2047. Area associated with LST class > 30 °C indicated a further increase of ~ 38% till 2047 with reference to year 2017. Findings of this study suggested proper utilization of LULC in order to mitigate the creation of UHIs associated with urbanization and built-up areas.


Asunto(s)
Autómata Celular , Ecosistema , Ciudades , Monitoreo del Ambiente , Calor , Temperatura , Urbanización
5.
J Environ Manage ; 245: 348-357, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158687

RESUMEN

Rapid urbanization is changing the existing patterns of Land Use Land Cover (LULC) globally which is consequently increasing the Land Surface Temperature (LST) in many regions. Present study was focused on estimating the current and simulating the future LULC and LST trends in the alpine environment of lower Himalayan region of Pakistan. Past patterns of LULC and LST were identified through the Support Vector Machine (SVM) and multi-spectral Landsat satellite images during 1987-2017 data period. The Cellular automata (CA) model and Artificial Neural Network (ANN) were applied to simulate future (years 2032 and 2047) LULC and LST changes, respectively, using their past patterns. CA model was validated for the simulated and the estimated LULC for the year 2017 with an overall Kappa (K) value of 0.77 using validation modules in QGIS and IDRISI software. ANN method was validated by correlating the observed and simulated LST for the year 2017 with correlation coefficient (R) and Mean Square Error (MSE) values of 0.81 and 0.51, respectively. Results indicated a change in the LULC and LST for instance the built-up area was increased by 4.43% while agricultural area and bare soil were reduced by 2.74% and 4.42%, respectively, from 1987 to 2017. The analysis of LST for different LULC classes indicated that built-up area has highest temperature followed by barren, agriculture and vegetation surfaces. Simulation of future LULC and LST showed that the built-up area will be increased by 2.27% (in 2032) and 4.13% (in 2047) which led 42% (in 2032) and 60% (in 2047) of the study area as compared to 26% area (in 2017) to experience LST greater than 27 °C. A strong correlation between built-up area changes and LST was thus found signifying major challenge to urban planners mitigating the consequent of Urban Heat Island (UHI) phenomenon. It is suggested that future urban planning should focus on urban plantation to counter UHI phenomena in the region of lower Himalayas.


Asunto(s)
Monitoreo del Ambiente , Urbanización , Islas , Pakistán , Temperatura
6.
Sci Total Environ ; 505: 748-61, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25461078

RESUMEN

A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management.

7.
J Hazard Mater ; 263 Pt 2: 322-33, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23972667

RESUMEN

Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology.


Asunto(s)
Biomasa , Cobre/análisis , Cobre/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Agricultura , Carbono/química , Chlorophyta , Electroquímica , Filtración , Hongos , Cinética , Membranas Artificiales , Ósmosis , Phaeophyceae , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...