Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269984

RESUMEN

Wheat (Triticum aestivum L.) is known to be negatively affected by heat stress, and its production is threatened by global warming, particularly in arid regions. Thus, efforts to better understand the molecular responses of wheat to heat stress are required. In the present study, Fourier transform infrared (FTIR) spectroscopy, coupled with chemometrics, was applied to develop a protocol that monitors chemical changes in common wheat under heat stress. Wheat plants at the three-leaf stage were subjected to heat stress at a 42 °C daily maximum temperature for 3 days, and this led to delayed growth in comparison to that of the control. Measurement of FTIR spectra and their principal component analysis showed partially overlapping features between heat-stressed and control leaves. In contrast, supervised machine learning through linear discriminant analysis (LDA) of the spectra demonstrated clear discrimination of heat-stressed leaves from the controls. Analysis of LDA loading suggested that several wavenumbers in the fingerprinting region (400-1800 cm-1) contributed significantly to their discrimination. Novel spectrum-based biomarkers were developed using these discriminative wavenumbers that enabled the successful diagnosis of heat-stressed leaves. Overall, these observations demonstrate the versatility of FTIR-based chemical fingerprints for use in heat-stress profiling in wheat.


Asunto(s)
Hojas de la Planta , Triticum , Análisis Discriminante , Respuesta al Choque Térmico , Hojas de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Triticum/química
2.
Theor Appl Genet ; 135(1): 337-350, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34655314

RESUMEN

KEY MESSAGE: GWAS on a bread wheat panel with high D genome diversity identified novel alleles and QTLs associated with resilience to combined heat and drought stress under natural field conditions. As heat (H) and drought stresses occur concurrently under field conditions, studying them separately offers limited opportunities for wheat improvement. Here, a wheat diversity panel containing Aegilops tauschii introgressions was evaluated under H and combined heat-drought (HD) stresses to identify quantitative trait loci (QTLs) associated with resilience to the stresses, and to assess the practicability of harnessing Ae. tauschii diversity for breeding for combined stress resilience. Using genome-wide analysis, we identified alleles and QTLs on chromosomes 3D, 5D, and 7A controlling grain yield (GY), kernel number per spike, and thousand-kernel weight, and on 3D (521-549 Mbp) controlling GY alone. A strong marker-trait association (MTA) for GY stability on chromosome 3D (508.3 Mbp) explained 20.3% of the variation. Leaf traits-canopy temperature, vegetation index, and carbon isotope composition-were controlled by five QTLs on 2D (23-96, 511-554, and 606-614 Mbp), 3D (155-171 Mbp), and 5D (407-413 Mbp); some of them were pleiotropic for GY and yield-related traits. Further analysis revealed candidate genes, including GA20ox, regulating GY stability, and CaaX prenyl protease 2, regulating canopy temperature at the flowering stage, under H and HD stresses. As genome-wide association studies under HD in field conditions are scarce, our results provide genomic landmarks for wheat breeding to improve adaptation to H and HD conditions under climate change.


Asunto(s)
Aclimatación/genética , Genoma de Planta , Triticum/genética , Aegilops/genética , Pan , Sequías , Estudio de Asociación del Genoma Completo , Calor , Sitios de Carácter Cuantitativo , Triticum/fisiología
3.
Breed Sci ; 71(4): 435-443, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34912170

RESUMEN

Twenty-four wheat lines, developed by Aegilops tauschii Coss. introgressions and previously selected for heat or salinity stress tolerance, were evaluated under a drought-rewatering-drought cycle for two years. The objective was to select breeding lines that are resilient to more than one abiotic stress. The experiment was designed in alpha lattice with three replications. Drought was imposed by withholding water during flowering. The results revealed considerable genetic variability in physio-agronomic traits, reflecting the variation in the introgressed segments. High heritability estimates (above 47%) were recorded for most traits, including days to 50% heading, plant height, and thousand-grain weight, indicating the genetic control of these traits which may be useful for cultivar development. The trait-trait correlations within and between water regimes highlighted a strong association among the genetic factors controlling these traits. Some lines exhibited superior performance in terms of stress tolerance index and mean productivity compared with their backcross parent and elite cultivars commonly grown in hot and dry areas. Graphical genotyping revealed unique introgressed segments on chromosomes 4B, 6B, 2D, and 3D in some drought-resilient lines which may be linked to drought resilience. Therefore, we recommend these lines for further breeding to develop climate-resilient wheat varieties.

4.
Plant Phenomics ; 2021: 9846158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778804

RESUMEN

The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version.

5.
Breed Sci ; 71(2): 184-192, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377066

RESUMEN

Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: 'Imam', which possessed the Glu-D1d allele responsible for the suitable bread-making; 'Bohaine', which displayed high expression level of SSPs; and 'Condor', which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.

6.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673217

RESUMEN

Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) lines. The MSD lines harbored genomic fragments from Aegilops tauschii. These materials were grown under optimum conditions in Japan, as well as under heat and combined heat-drought conditions in Sudan. We aimed to explore useful QTLs for kernel weight and shape-related traits under stress conditions. These can be useful for enhancing yield under stress conditions. MSD lines possessed remarkable genetic variation for all traits under all conditions, and some lines showed better performance than the background parent Norin 61. We identified 82 marker trait associations (MTAs) under the three conditions; most of them originated from the D genome. All of the favorable alleles originated from Ae. tauschii. For the first time, we identified markers on chromosome 5D associated with a candidate gene encoding a RING-type E3 ubiquitin-protein ligase and expected to have a role in regulating wheat seed size. Our study provides important knowledge for the improvement of wheat yield under optimum and stress conditions. The results emphasize the importance of Ae. tauschii as a gene reservoir for wheat breeding.


Asunto(s)
Aegilops/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Semillas , Triticum , Deshidratación/genética , Estudio de Asociación del Genoma Completo , Semillas/genética , Semillas/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo
7.
Nat Food ; 2(1): 19-27, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37117661

RESUMEN

Climate warming poses challenges for food production at low latitudes, particularly in arid regions. Sudan, where wheat demand could triple by 2050, has the world's hottest wheat-growing environments, and observed yield declines in hot seasons are prompting the national government to prepare for a warming of 1.5-4.2 °C. Using advanced crop modelling under different climate and socioeconomic scenarios, we show that despite the use of adjusted sowing dates and existing heat-tolerant varieties, by 2050, Sudan's domestic production share may decrease from 16.0% to 4.5-12.2%. In the relatively cool northern region, yields will need to increase by 3.1-4.7% per year, at non-compounding rates, to meet demand. In the hot central and eastern regions, improvements in heat tolerance are essential, and yields must increase by 0.2-2.7% per year to keep pace with climate warming. These results indicate the potential contribution of climate change adaptation measures and provide targets for addressing the wheat supply challenge.

8.
Breed Sci ; 67(5): 483-492, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29398942

RESUMEN

In wheat (Triticum aestivum L.) high temperature (≥30°C) during grain filling leads to considerable reduction in grain yield. We studied 400 multiple synthetic derivatives (MSD) lines to examine the genetic variability of heat stress-adaptive traits and to identify new sources of heat tolerance to be used in wheat breeding programs. The experiment was arranged in an augmented randomized complete block design in four environments in Sudan. A wide range of genetic variability was found in most of the traits in all environments. For all traits examined, we found MSD lines that showed better performance than their parent 'Norin 61' and two adapted Sudanese cultivars. Using the heat tolerance efficiency, we identified 13 highly heat-tolerant lines and several lines with intermediate heat tolerance and good yield potential. We also identified lines with alleles that can be used to increase wheat yield potential. Our study revealed that the use of the MSD population is an efficient way to explore the genetic variation in Ae. tauschii for wheat breeding and improvement.

9.
Theor Appl Genet ; 126(4): 971-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23269228

RESUMEN

Heat and drought adaptive quantitative trait loci (QTL) in a spring bread wheat population resulting from the Seri/Babax cross designed to minimize confounding agronomic traits have been identified previously in trials conducted in Mexico. The same population was grown across a wide range of environments where heat and drought stress are naturally experienced including environments in Mexico, West Asia, North Africa (WANA), and South Asia regions. A molecular genetic linkage map including 475 marker loci associated to 29 linkage groups was used for QTL analysis of yield, days to heading (DH) and to maturity (DM), grain number (GM2), thousand kernel weight (TKW), plant height (PH), canopy temperature at the vegetative and grain filling stages (CTvg and CTgf), and early ground cover. A QTL for yield on chromosome 4A was confirmed across several environments, in subsets of lines with uniform allelic expression of a major phenology QTL, but not independently from PH. With terminal stress, TKW QTL was linked or pleiotropic to DH and DM. The link between phenology and TKW suggested that early maturity would favor the post-anthesis grain growth periods resulting in increased grain size and yields under terminal stress. GM2 and TKW were partially associated with markers at different positions suggesting different genetic regulation and room for improvement of both traits. Prediction accuracy of yield was improved by 5 % when using marker scores of component traits (GM2 and DH) together with yield in multiple regression. This procedure may provide accumulation of more favorable alleles during selection.


Asunto(s)
Adaptación Biológica/genética , Clima , Hibridación Genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Triticum/crecimiento & desarrollo , Triticum/genética , África del Norte , Asia , Mapeo Cromosómico , Marcadores Genéticos/genética , México , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...