Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurourol Urodyn ; 42(6): 1344-1351, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37306331

RESUMEN

AIMS: To determine the role of opioid and ß-adrenergic receptors in bladder underactivity induced by prolonged pudendal nerve stimulation (PNS). METHODS: In α-chloralose anesthetized cats, 30-min PNS was applied repeatedly for 3-9 times to induce poststimulation or persistent bladder underactivity. Then, naloxone (opioid receptor antagonist, 1 mg/kg, IV) or propranolol (ß-adrenergic receptor antagonist, 3 mg/kg, IV) was given to reverse the bladder underactivity. After the drug treatment, an additional 30-min PNS was applied to counteract the drug effect. Repeated cystometrograms were performed by slowly (1-2 mL/min) infusing the bladder with saline via a urethral catheter to determine the bladder underactivity and the treatment effects. RESULTS: Prolonged (2-4.5 h) PNS induced bladder underactivity evident as a large bladder capacity (169 ± 49% of control) and a reduced amplitude of bladder contraction (59 ± 17% of control). Naloxone fully reversed the bladder underactivity by reducing bladder capacity to 113 ± 58% and increasing the amplitude of bladder contraction to 104 ± 34%. After administration of naloxone an additional 30-min PNS temporarily increased the bladder capacity to the underactive bladder level (193 ± 74%) without changing the amplitude of the bladder contraction. Propranolol had no effect on bladder underactivity. CONCLUSIONS: A tonic enkephalinergic inhibitory mechanism in the CNS plays a critical role in the bladder underactivity induced by prolonged PNS, while the peripheral ß-adrenergic receptor mechanism in the detrusor is not involved. This study provides basic science evidence consistent with the clinical observation that comorbid opioid usage may contribute to voiding dysfunction in patients with Fowler's syndrome.


Asunto(s)
Nervio Pudendo , Enfermedades de la Vejiga Urinaria , Gatos , Animales , Vejiga Urinaria , Analgésicos Opioides/farmacología , Propranolol/farmacología , Receptores Adrenérgicos beta , Reflejo/fisiología , Estimulación Eléctrica , Naloxona/farmacología
2.
Neuromodulation ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37125972

RESUMEN

OBJECTIVE: The purpose of this study is to determine whether adaptively stepwise increasing the intensity of a high-frequency (10 kHz) biphasic stimulation (HFBS) can produce nerve conduction block without generating a large initial response. MATERIALS AND METHODS: In anesthetized cats, three cuff electrodes were implanted on the left pudendal nerve for stimulation or block. The urethral pressure increase induced by pudendal nerve stimulation was used to measure the pudendal nerve block induced by HFBS. RESULTS: HFBS applied suddenly with a large step increase in intensity induced a large (86 ± 16 cmH2O) urethral pressure increase before it blocked pudendal nerve conduction. However, HFBS applied by adaptively stepwise increasing the intensity every 10 to 60 seconds over a long period (33-301 minutes; average 108 ± 35 minutes) with many small intensity increases (0.005-0.1 mA) induced no response or low-amplitude high-frequency urethral pressure changes before it blocked pudendal nerve conduction. The minimal HFBS intensities required by the two different methods to block pudendal nerve conduction are similar. CONCLUSION: This study is important for better understanding the possible mechanisms underlying the HFBS-induced nerve block and provides the possibility of developing a new nerve block method for clinical applications in which an initial large response is a concern.

3.
IEEE Trans Biomed Eng ; 70(8): 2384-2394, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37022874

RESUMEN

OBJECTIVE: To determine the role of ion concentrations and ion pump activity in conduction block of myelinated axon induced by a long-duration direct current (DC). METHODS: A new axonal conduction model for myelinated axons based on the classical Frankenhaeuser-Huxley (FH) equations is developed that includes ion pump activity and allows the intracellular and extracellular Na+ and K+ concentrations to change with axonal activity. RESULTS: Action potential generation, propagation, and acute DC block occurring within a short period (milliseconds) that do not significantly change the ion concentrations or trigger ion pump activity are successfully simulated by the new model in a similar way as the classical FH model. Different from the classical model, the new model also successfully simulates the post-stimulation block phenomenon, i.e., the axonal conduction block occurring after terminating a long-duration (30 seconds) DC stimulation as observed recently in animal studies. The model reveals a significant K+ accumulation outside the axonal node as the possible mechanism underlying the post-DC block that is slowly reversed by ion pump activity during the post-stimulation period. CONCLUSION: Changes in ion concentrations and ion pump activity play an important role in post-stimulation block induced by long-duration DC stimulation. SIGNIFICANCE: Long-duration stimulation is used clinically for many neuromodulation therapies, but the effects on axonal conduction/block are poorly understood. This new model will be useful for better understanding of the mechanisms underlying long-duration stimulation that changes ion concentrations and triggers ion pump activity.


Asunto(s)
Modelos Neurológicos , Conducción Nerviosa , Animales , Conducción Nerviosa/fisiología , Axones/fisiología , Potenciales de Acción/fisiología , Electricidad , Estimulación Eléctrica
4.
Physiol Rep ; 11(2): e15582, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695759

RESUMEN

The purpose of this study was to determine how sensory neurons respond to high-frequency membrane potential alternation between depolarization and hyperpolarization. Membrane currents were recorded from dissociated dorsal root ganglion (DRG) neurons of adult rats using the whole cell patch clamp technique in voltage clamp mode. Stepwise depolarization of the membrane was applied first to determine the threshold membrane potential for inducing an action potential (AP) current. Then, membrane potential alternation between depolarization (to +20 mV) and hyperpolarization (to -110 mV) was applied to the neuron for 10 s at different frequencies (10 Hz to 1 kHz). The tested DRG neurons had APs of either a long duration (>10 ms) or a short duration (<10 ms). Membrane potential alternation at ≥500 Hz completely disrupted the AP generation, disabled the ion channel gating function, and produced membrane current alternating symmetrically across zero. Replacing extracellular sodium with potassium increased the amplitude of the membrane current response and caused the membrane current to be larger during hyperpolarization than during depolarization. These results support the hypothesis that high-frequency biphasic stimulation blocks axonal conduction by driving the potassium channel open constantly. Understanding neural membrane response to high-frequency membrane potential alternation is important to reveal the possible mechanisms underlying axonal conduction block induced by high-frequency biphasic stimulation.


Asunto(s)
Ganglios Espinales , Neuronas , Ratas , Animales , Potenciales de la Membrana/fisiología , Ganglios Espinales/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Neuronas Aferentes
5.
Neuromodulation ; 26(3): 607-613, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088749

RESUMEN

OBJECTIVES: This study aims to determine temperature effect on nerve conduction block induced by high-frequency (kHz) biphasic stimulation (HFBS). MATERIALS AND METHODS: Frog sciatic nerve-muscle preparation was immersed in Ringer's solution at a temperature of 15 or 20 °C. To induce muscle contractions, a bipolar cuff electrode delivered low-frequency (0.25 Hz) stimulation to the nerve. To induce nerve block, a tripolar cuff electrode was placed distal to the bipolar cuff electrode to deliver HFBS (2 or 10 kHz). A bipolar hook electrode distal to the blocking electrode was used to confirm that the nerve block occurred locally at the site of HFBS. A thread tied onto the foot was attached to a force transducer to measure the muscle contraction force. RESULTS: At 15 °C, both 2- and 10-kHz HFBSs elicited an initial transient muscle contraction and then produced nerve block during the stimulation (ie, acute block), with the 10 kHz having a significantly (p < 0.001) higher acute block threshold (5.9 ± 0.8 mA peak amplitude) than the 2 kHz (1.9 ± 0.3 mA). When the temperature was increased to 20 °C, the acute block threshold for the 10-kHz HFBS was significantly (p < 0.0001) decreased from 5.2 ± 0.3 to 4.4 ± 0.2 mA, whereas the 2-kHz HFBS induced a tonic muscle contraction during the stimulation but elicited nerve block after terminating the 2-kHz HFBS (ie, poststimulation block) with an increased block duration at a higher stimulation intensity. CONCLUSION: Temperature has an important influence on HFBS-induced nerve block. The blocking mechanisms underlying acute and poststimulation nerve blocks are likely to be very different.


Asunto(s)
Bloqueo Nervioso , Conducción Nerviosa , Humanos , Conducción Nerviosa/fisiología , Temperatura , Contracción Muscular/fisiología , Estimulación Eléctrica
6.
Neuromodulation ; 26(8): 1817-1822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35941016

RESUMEN

OBJECTIVE: This study aimed at determining whether stimulation of sacral spinal roots can induce penile erection in cats. MATERIALS AND METHODS: In anesthetized cats, a 20-gauge catheter was inserted into the corpus cavernosum to measure the penile pressure. Stimulus pulses (5-80 Hz, 0.2 ms) were applied through bipolar hook electrodes to sacral ventral roots alone or to combined ventral and dorsal roots of a single S1-S3 segment to induce penile pressure increases and penile erection. RESULTS: Stimulation of the S1 or S2 ventral root at 30 to 40 Hz induced observable penile erection with rigidity and the largest increase (169 ± 11 cmH2O) in penile pressure. Continuous stimulation (10 minutes) of afferent and efferent axons by simultaneous stimulation of the S1 or S2 dorsal and ventral roots at 30 Hz also produced a large increase (190 ± 8 cmH2O) in penile pressure that was sustainable during the entire stimulation period. After a complete spinal cord transection at the T9-T10 level, simultaneous stimulation of the S1 or S2 dorsal and ventral roots induced large (186 ± 9 cmH2O) and sustainable increases in penile pressure. CONCLUSION: This study indicates the possibility to develop a novel neuromodulation device to restore penile erection after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode through the sacral foramen to stimulate a sacral spinal root.


Asunto(s)
Erección Peniana , Traumatismos de la Médula Espinal , Masculino , Gatos , Animales , Erección Peniana/fisiología , Raíces Nerviosas Espinales/fisiología , Estimulación Eléctrica
7.
Neuromodulation ; 26(3): 577-588, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34278654

RESUMEN

OBJECTIVE: To reveal the possible mechanisms underlying poststimulation block induced by high-frequency biphasic stimulation (HFBS). MATERIALS AND METHODS: A new axonal conduction model is developed for unmyelinated axons. This new model is different from the classical axonal conduction model by including both ion concentrations and membrane ion pumps to allow analysis of axonal responses to long-duration stimulation. Using the new model, the post-HFBS block phenomenon reported in animal studies is simulated and analyzed for a wide range of stimulation frequencies (100 Hz-10 kHz). RESULTS: HFBS can significantly change the Na+ and K+ concentrations inside and outside the axon to produce a post-HFBS block of either short-duration (<500 msec) or long-duration (>3 sec) depending on the duration of HFBS. The short-duration block is due to the fast recovery of the Na+ and K+ concentrations outside the axon in periaxonal space by diffusion of ions into and from the large extracellular space, while the long-duration block is due to the slow restoration of the normal Na+ concentration inside the axon by membrane ion pumps. The 100 Hz HFBS requires the minimal electrical energy to achieve the post-HFBS block, while the 10 kHz stimulation is the least effective frequency requiring high intensity and long duration to achieve the block. CONCLUSION: This study reveals two possible ionic mechanisms underlying post-HFBS block of axonal conduction. Understanding these mechanisms is important for improving clinical applications of HFBS block and for developing new nerve block methods employing HFBS.


Asunto(s)
Axones , Bloqueo Nervioso , Animales , Estimulación Eléctrica
8.
J Sex Med ; 19(10): 1517-1523, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057523

RESUMEN

BACKGROUND: Vaginal lubrication and contractions are among the top difficulties affecting sexual intercourse in women after spinal cord injury. AIM: This study aimed at determining if pudendal nerve stimulation (PNS) can improve vaginal lubrication and induce increases in vaginal pressure. METHODS: In anesthetized cats, a small piece of cotton was inserted into the vagina for 10 minutes with or without PNS to measure vaginal wetness by the weight increase of the vaginal cotton. Then, a small balloon catheter was inserted into the vagina to measure the pressure increase induced by PNS. Intensity response of the vagina to PNS (30 Hz, 0.2 ms, 5 seconds) was determined at 1-4 times of intensity threshold (T) for PNS to induce an observable vaginal pressure increase. Frequency response was determined at 2T intensity in a range of PNS frequencies (5-50 Hz). Finally, fatigue in vaginal pressure was determined by applying PNS (30 Hz, 2T) either continuously or intermittently (5 seconds on and 5 seconds off) for 4 minutes. OUTCOMES: The effectiveness of PNS in increasing vaginal wetness and pressure is evaluated. RESULTS: PNS significantly (P = .0327) increased the measurement of vaginal wetness from 15.8 ± 3.8 mg during control without stimulation to 32.4 ± 4.7 mg after stimulation. Vaginal pressure increased as PNS intensity or frequency increased. PNS (30 Hz, 2T) induced vaginal pressure increase ≥80% of the maximal response. Intermittent PNS induced significantly (P = .0354) smaller fatigue (45.6 ± 3.7%) in vaginal pressure than continuous PNS (69.1 ± 3.0%) during the 4-minute stimulation. CLINICAL TRANSLATION: This study raises the possibility of developing a novel pudendal neuromodulation device to improve female sexual function after spinal cord injury. STRENGTHS & LIMITATIONS: This study provides preclinical data supporting the development of a novel pudendal neuromodulation device. The limitation includes the lack of chemical analysis of the vaginal secretion. CONCLUSION: PNS can improve vaginal lubrication and induce increases in vaginal pressure. Chen J, Zhong Y, Wang J, et al. Vaginal Lubrication and Pressure Increase Induced by Pudendal Nerve Stimulation in Cats. J Sex Med 2022;19:1517-1523.


Asunto(s)
Nervio Pudendo , Vagina , Animales , Gatos , Estimulación Eléctrica , Femenino , Lubrificación , Fatiga Muscular , Presión , Nervio Pudendo/fisiología , Vagina/fisiología
9.
J Neural Eng ; 19(4)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35850095

RESUMEN

Objective.A new axonal conduction model was used to analyze the interaction between intracellular sodium concentration and membrane potential oscillation in axonal conduction block induced by high-frequency (kHz) biphasic stimulation (HFBS).Approach.The model includes intracellular and extracellular sodium and potassium concentrations and ion pumps. First, the HFBS (1 kHz, 5.4 mA) was applied for a duration (59.4 s) long enough to produce an axonal conduction block after terminating the stimulation, i.e. a post-stimulation block. Then, the intensity of HFBS was reduced to a lower level for 4 s to determine if the axonal conduction block could be maintained.Main results.The block duration was shortened from 1363 ms to 5 ms as the reduced HFBS intensity was increased from 0 mA to 4.1 mA. The block was maintained for the entire tested period (4000 ms) if the reduced intensity was above 4.2 mA. At the low intensity (<4.2 mA) the membrane potential oscillation disrupted the post-stimulation block caused by the increased intracellular sodium concentration, while at the high intensity (>4.2 mA) the membrane potential oscillation was strong enough to maintain the block and further increased the intracellular sodium concentration.Significance.This study indicates a possibility to develop a new nerve block method to reduce the HFBS intensity, which can extend the battery life for an implantable nerve stimulator in clinical applications to block pain of peripheral origin.


Asunto(s)
Modelos Neurológicos , Conducción Nerviosa , Potenciales de Acción/fisiología , Axones/fisiología , Estimulación Eléctrica/métodos , Potenciales de la Membrana , Conducción Nerviosa/fisiología , Sodio
10.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R535-R541, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319898

RESUMEN

This study examined the effect of sacral neuromodulation on persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PudNS). In 10 α-chloralose-anesthetized cats, repetitive application of 30-min PudNS induced bladder underactivity evident as an increase in bladder capacity during a cystometrogram (CMG). S1 or S2 dorsal root stimulation (15 or 30 Hz) at 1 or 1.5 times threshold intensity (T) for inducing reflex hindlimb movement (S1) or anal sphincter twitch (S2) was applied during a CMG to determine if the stimulation can reverse the bladder underactivity. Persistent (>3 h) bladder underactivity consisting of a significant increase in bladder capacity to 163.1 ± 11.3% of control was induced after repetitive (1-10 times) application of 30-min PudNS. S2 but not S1 dorsal root stimulation at 15 Hz and 1 T intensity reversed the PudNS-induced bladder underactivity by significantly reducing the large bladder capacity to 124.3 ± 12.9% of control. Other stimulation parameters were not effective. After the induction of persistent underactivity, recordings of reflex bladder activity under isovolumetric conditions revealed that S2 dorsal root stimulation consistently induced the largest bladder contraction at 15 Hz and 1 T when compared with other frequencies (5-40 Hz) or intensities (0.25-1.5 T). This study provides basic science evidence consistent with the hypothesis that abnormal pudendal afferent activity contributes to the bladder underactivity in Fowler's syndrome and that sacral neuromodulation treats this disorder by reversing the bladder inhibition induced by pudendal nerve afferent activity.


Asunto(s)
Terapia por Estimulación Eléctrica , Nervio Pudendo , Animales , Gatos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Nervio Pudendo/fisiología , Reflejo/fisiología , Vejiga Urinaria/inervación
11.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R136-R143, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34984922

RESUMEN

The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can improve nonobstructive urinary retention (NOUR) induced by prolonged pudendal nerve stimulation (PNS). In this exploratory acute study using eight cats under anesthesia, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. A double lumen catheter was inserted via the bladder dome for bladder infusion and pressure measurement and to allow voiding without a physical urethral outlet obstruction. The voided and postvoid residual (PVR) volumes were also recorded. NOUR induced by repetitive (4-13 times) application of 30-min PNS significantly (P < 0.05) reduced voiding efficiency by 49.5 ± 16.8% of control (78.3 ± 7.9%), with a large PVR volume at 208.2 ± 82.6% of control bladder capacity. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during cystometrograms to improve the PNS-induced NOUR. SPNSc and SPNSi applied by nerve cuff electrodes significantly (P < 0.05) increased voiding efficiency to 74.5 ± 18.9% and 67.0 ± 15.3%, respectively, and reduced PVR volume to 54.5 ± 39.0% and 88.3 ± 56.0%, respectively. SPNSc and SPNSi applied noninvasively by skin surface electrodes also improved NOUR similar to the stimulation applied by a cuff electrode. This study indicates that abnormal pudendal afferent activity could be a pathophysiological cause for the NOUR occurring in Fowler's syndrome and a noninvasive superficial peroneal neuromodulation therapy might be developed to treat NOUR in patients with Fowler's syndrome.


Asunto(s)
Canal Anal/inervación , Nervio Peroneo , Nervio Pudendo/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio , Uretra/inervación , Vejiga Urinaria/inervación , Retención Urinaria/terapia , Animales , Gatos , Modelos Animales de Enfermedad , Femenino , Masculino , Retención Urinaria/fisiopatología , Urodinámica
12.
J Comput Neurosci ; 50(2): 203-215, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34800252

RESUMEN

The purpose of this modeling study is to develop a novel method to block nerve conduction by high frequency biphasic stimulation (HFBS) without generating initial action potentials. An axonal conduction model including both ion concentrations and membrane ion pumps is used to analyze the axonal response to 1 kHz HFBS. The intensity of HFBS is increased in multiple steps while maintaining the intensity at a sub-threshold level to avoid generating an action potential. Axonal conduction block by HFBS is defined as the failure of action potential propagation at the site of HFBS. The simulation analysis shows that step-increases in sub-threshold intensity during HFBS can successfully block axonal conduction without generating an initial response because the excitation threshold of the axon can be gradually increased by the sub-threshold HFBS. The mechanisms underlying the increase in excitation threshold involve changes in intracellular and extracellular sodium and potassium concentration, change in the resting potential, partial inactivation of the sodium channel and partial activation of the potassium channel by HFBS. When the excitation threshold reaches a sufficient level, an acute block occurs first and after additional sub-threshold HFBS it is followed by a post-stimulation block. This study indicates that step-increases in sub-threshold HFBS intensity induces a gradual increase in axonal excitation threshold that may allow HFBS to block nerve conduction without generating an initial response. If this finding is proven to be true in human, it will significantly impact clinical applications of HFBS to treat chronic pain.


Asunto(s)
Modelos Neurológicos , Conducción Nerviosa , Potenciales de Acción/fisiología , Axones/fisiología , Estimulación Eléctrica/métodos , Humanos , Conducción Nerviosa/fisiología
13.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G735-G742, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855517

RESUMEN

The aim of this study was to determine whether stimulation of sacral spinal nerve roots can induce defecation in cats. In anesthetized cats, bipolar hook electrodes were placed on the S1-S3 dorsal and/or ventral roots. Stimulus pulses (1-50 Hz, 0.2 ms) were applied to an individual S1-S3 root to induce proximal/distal colon contractions and defecation. Balloon catheters were inserted into the proximal and distal colon to measure contraction pressure. Glass marbles were inserted into the rectum to demonstrate defecation by videotaping the elimination of marbles. Stimulation of the S2 ventral root at 7 Hz induced significantly (P < 0.05) larger contractions (32 ± 9 cmH2O) in both proximal and distal colon than stimulation of the S1 or S3 ventral root. Intermittent (5 times) stimulation (1 min on and 1 min off) of both dorsal and ventral S2 roots at 7 Hz produced reproducible colon contractions without fatigue, whereas continuous stimulation of 5-min duration caused significant fatigue in colon contractions. Stimulation (7 Hz) of both dorsal and ventral S2 roots together successfully induced defecation that eliminated 1 or 2 marbles from the rectum. This study indicates the possibility to develop a novel neuromodulation device to restore defecation function after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode via the sacral foramen to stimulate a sacral spinal root.NEW & NOTEWORTHY This study in cats determined the optimal stimulation parameters and the spinal segment for sacral spinal root stimulation to induce colon contraction. The results have significant implications for design of a novel neuromodulation device to restore defecation function after spinal cord injury (SCI) and for optimizing sacral neuromodulation parameters to treat non-SCI people with chronic constipation.


Asunto(s)
Defecación , Raíces Nerviosas Espinales/fisiología , Animales , Gatos , Colon/inervación , Colon/fisiología , Estimulación Eléctrica , Femenino , Región Lumbosacra/fisiología , Masculino
14.
Exp Neurol ; 346: 113860, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487735

RESUMEN

The goal of this study is to induce low-pressure voiding by stimulation and bilateral 1 kHz post-stimulation block of the pudendal nerves. In anesthetized cats, wire hook electrodes were placed on the left and/or right pudendal nerves. Stimulus pulses (30 Hz, 0.2 ms) were applied to one pudendal nerve to induce a reflex bladder contraction and to produce contractions of the external urethral sphincter (EUS). High frequency (1 kHz) biphasic stimulation was applied to block axonal conduction in both pudendal nerves and block EUS activity. In 4 cats, a catheter was inserted into the distal urethra to perfuse and measure the back pressure caused by the EUS contraction. In another 5 cats, a catheter was inserted into the bladder dome and the urethra was left open to allow voiding. The 1 kHz stimulation (30-60 s, 0.5-5 mA) delivered via a wire hook electrode completely blocked pudendal nerve conduction for ≥2 min after terminating the stimulation, i.e., a post-stimulation block. The block gradually disappeared in 6-18 min. The block duration increased with increasing amplitude or duration of the 1 kHz stimulation. Without the 1 kHz block, 30 Hz stimulation alone induced high-pressure (90 cmH2O) voiding. When combined with the 1 kHz block, the 30 Hz stimulation induced low-pressure (≤50 cmH2O) voiding with a high voiding efficiency (80%). In summary, a minimally invasive surgical approach might be developed to restore voiding function after spinal cord injury by stimulation and block of the pudendal nerves using lead electrodes.


Asunto(s)
Bloqueo Nervioso Autónomo/métodos , Nervio Pudendo/fisiología , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiología , Micción/fisiología , Animales , Gatos , Estimulación Eléctrica/métodos , Femenino , Masculino , Presión
15.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R675-R682, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719564

RESUMEN

The purpose of this study is to determine whether superficial peroneal nerve stimulation (SPNS) can reverse persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PNS). In 16 α-chloralose-anesthetized cats, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. Bladder underactivity consisting of a significant increase in bladder capacity to 157.8 ± 10.9% of control and a significant reduction in bladder contraction amplitude to 56.0 ± 5.0% of control was induced by repetitive (4-16 times) application of 30-min PNS. SPNS (1 Hz, 0.2 ms) at 1.5-2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during a cystometrogram (CMG) to determine whether the stimulation can reverse the PNS-induced bladder underactivity. SPNSc or SPNSi applied by nerve cuff electrodes during the prolonged PNS inhibition significantly reduced bladder capacity to 124.4 ± 10.7% and 132.4 ± 14.2% of control, respectively, and increased contraction amplitude to 85.3 ± 6.2% and 75.8 ± 4.7%, respectively. Transcutaneous SPNSc and SPNSi also significantly reduced bladder capacity and increased contraction amplitude. Additional PNS applied during the bladder underactivity further increased bladder capacity, whereas SPNSc applied simultaneously with the PNS reversed the increase in bladder capacity. This study indicates that a noninvasive superficial peroneal neuromodulation therapy might be developed to treat bladder underactivity caused by abnormal pudendal nerve somatic afferent activation that is hypothesized to occur in patients with Fowler's syndrome.


Asunto(s)
Nervio Peroneo/fisiopatología , Nervio Pudendo/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio , Vejiga Urinaria de Baja Actividad/terapia , Vejiga Urinaria/inervación , Urodinámica , Animales , Gatos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Masculino , Inhibición Neural , Recuperación de la Función , Factores de Tiempo , Vejiga Urinaria de Baja Actividad/etiología , Vejiga Urinaria de Baja Actividad/fisiopatología
16.
Exp Neurol ; 340: 113658, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33639209

RESUMEN

Neurogenic bladder management after spinal cord injury (SCI) is very challenging. Daily urethral catheterization is most commonly used to empty the bladder, which causes frequent infections of the lower urinary tract. This study reports a novel idea to restore both continence and micturition after SCI by an implantable pudendal nerve stimulator (PNS). The PNS was surgically implanted in four cats with complete SCI at T9-T10 spinal level and tested weekly for 13-14 weeks under awake conditions. These chronic SCI cats consistently exhibited large residual bladder volumes (average 40-50 ml) due to their inability to void efficiently, while urine leakage also occurred frequently. The PNS which consisted of stimulating the pudendal nerve at 20-30 Hz to trigger a spinal reflex bladder contraction and at the same time blocking the pudendal nerves bilaterally with 10 kHz stimulation to relax the external urethral sphincter and reduce the urethral outlet resistance successfully induced highly efficient (average 80-100%), low pressure (<50 cmH2O) voiding. The PNS at 5 Hz also promoted urine storage by inhibiting reflex bladder activity and increasing bladder capacity. At the end of 14-week chronic testing, low pressure efficient voiding induced by PNS was further confirmed under anesthesia by directly measuring voiding pressure using a bladder catheter inserted through the bladder dome. This study demonstrated the efficacy and safety of the PNS in awake chronic SCI cats, suggesting that a novel neuroprosthesis can be developed for humans to restore bladder function after SCI by stimulating and/or blocking the pudendal nerves.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Nervio Pudendo/fisiología , Traumatismos de la Médula Espinal/terapia , Vejiga Urinaria/fisiología , Incontinencia Urinaria/terapia , Micción/fisiología , Animales , Gatos , Femenino , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas/lesiones , Vejiga Urinaria/inervación , Incontinencia Urinaria/etiología , Incontinencia Urinaria/fisiopatología
17.
IEEE Trans Biomed Eng ; 68(10): 2974-2985, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33544668

RESUMEN

OBJECTIVE: To reveal the possible contribution of changes in membrane ion concentration gradients and ion pump activity to axonal conduction/block induced by long-duration electrical stimulation. METHODS: A new model for conduction and block of unmyelinated axons based on the classical Hodgkin-Huxley (HH) equations is developed to include changes in Na+ and K+ concentrations and ion pumps. The effect of long-duration stimulation on axonal conduction/block is analyzed by computer simulation using this new model. RESULTS: The new model successfully simulates initiation, propagation, and block of action potentials induced by short-duration (multiple milliseconds) stimulations that do not significantly change the ion concentrations in the classical HH model. In addition, the activity-dependent effects such as action potential attenuation and broadening observed in animal studies are also successfully simulated by the new model. Finally, the model successfully simulates axonal block occurring after terminating a long-duration (multiple seconds) direct current (DC) stimulation as observed in recent animal studies and reveals 3 different mechanisms for the post-DC block of axonal conduction. CONCLUSION: Ion concentrations and pumps play an important role in post-stimulation effects and activity-dependent effects on axonal conduction/block. The duration of stimulation is a determinant factor because it influences the total charges applied to the axon, which in turn determines the ion concentrations inside and outside the axon. SIGNIFICANCE: Despite recent clinical success of many neurostimulation therapies, the effects of long-duration stimulation on axonal conduction/block are poorly understood. This new model could significantly impact our understanding of the mechanisms underlying different neurostimulation therapies.


Asunto(s)
Modelos Neurológicos , Conducción Nerviosa , Potenciales de Acción , Animales , Axones , Simulación por Computador , Estimulación Eléctrica
18.
Neuromodulation ; 24(6): 1012-1017, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32762142

RESUMEN

OBJECTIVES: To test the hypothesis that poststimulation block of nerve conduction can be achieved by low-frequency (≤1 kHz) biphasic stimulation (LFBS). MATERIALS AND METHODS: A tripolar cuff electrode was placed around the pudendal nerve in cats to deliver LFBS (1 kHz, 500 Hz, and 100 Hz). Two bipolar hook electrodes were placed central and distal to the cuff electrode to induce external urethral sphincter (EUS) contractions. A catheter was inserted into the urethra to record EUS contraction pressure. Pudendal nerve block by LFBS was confirmed by the failure of the central hook electrode stimulation to induce EUS contractions, while the distal hook electrode stimulation still induced contractions. RESULTS: Pudendal nerve conduction was completely blocked by LFBS at different frequencies (1 kHz, 500 Hz, and 100 Hz) after terminating LFBS. The post-LFBS block induced at the minimal stimulation intensity and duration was fully reversible within the same time period (10-15 min on average) for the three frequencies. However, the stimulation duration to induce block significantly (p < 0.05) increased from 23 ± 8 sec to 95 ± 14 sec when frequency increased from 100 Hz to 1 kHz. CONCLUSION: This study discovered that LFBS (≤1 kHz), like high-frequency (≥5 kHz) biphasic stimulation (HFBS), can induce poststimulation block. The result provides support for the theory that biphasic stimulation waveforms block axonal conduction by changing intracellular and extracellular ion concentrations. The post-LFBS block provides the opportunity to develop new neuromodulation devices for clinical applications where initial nerve firing is acceptable.


Asunto(s)
Bloqueo Nervioso , Nervio Pudendo , Animales , Gatos , Estimulación Eléctrica , Masculino , Conducción Nerviosa , Uretra
19.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R80-R87, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146553

RESUMEN

The purpose of this study was to determine the effects of pudendal nerve stimulation (PNS) on reflex bladder activity and develop an animal model of underactive bladder (UAB). In six anesthetized cats, a bladder catheter was inserted via the urethra to infuse saline and measure pressure. A cuff electrode was implanted on the pudendal nerve. After determination of the threshold intensity (T) for PNS to induce an anal twitch, PNS (5 Hz, 0.2 ms, 2 T or 4 T) was applied during cystometrograms (CMGs). PNS (4-6 T) of 30-min duration was then applied repeatedly until bladder underactivity was produced. Following stimulation, control CMGs were performed over 1.5-2 h to determine the duration of bladder underactivity. When applied during CMGs, PNS (2 T and 4 T) significantly (P < 0.05) increased bladder capacity while PNS at 4 T also significantly (P < 0.05) reduced bladder contraction amplitude, duration, and area under contraction curve. Repeated application of 30-min PNS for a cumulative period of 3-8 h produced bladder underactivity exhibiting a significantly (P < 0.05) increased bladder capacity (173 ± 14% of control) and a significantly (P < 0.05) reduced contraction amplitude (50 ± 7% of control). The bladder underactivity lasted more than 1.5-2 h after termination of the prolonged PNS. These results provide basic science evidence supporting the proposal that abnormal afferent activity from external urethral/anal sphincter could produce central inhibition that underlies nonobstructive urinary retention (NOUR) in Fowler's syndrome. This cat model of UAB may be useful to investigate the mechanism by which sacral neuromodulation reverses NOUR in Fowler's syndrome.


Asunto(s)
Estimulación Eléctrica , Nervio Pudendo/fisiopatología , Reflejo , Uretra/inervación , Vejiga Urinaria de Baja Actividad/etiología , Vejiga Urinaria/inervación , Urodinámica , Animales , Gatos , Modelos Animales de Enfermedad , Femenino , Masculino , Factores de Tiempo , Vejiga Urinaria de Baja Actividad/fisiopatología
20.
Neuromodulation ; 23(6): 747-753, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32840020

RESUMEN

OBJECTIVE: To determine the relationship between various parameters of high-frequency biphasic stimulation (HFBS) and the recovery period of post-HFBS block of the pudendal nerve in cats. MATERIALS AND METHODS: A tripolar cuff electrode was implanted on the pudendal nerve to deliver HFBS in ten cats. Two hook electrodes were placed central or distal to the cuff electrode to stimulate the pudendal nerve and induce contractions of external urethral sphincter (EUS). A catheter was inserted toward the distal urethra to slowly perfuse the urethra and record the back-up pressure generated by EUS contractions. After determining the block threshold (T), HFBS (6 or 10 kHz) of different durations (1, 5, 10, 20, 30 min) and intensities (1T or 2T) was used to produce the post-HFBS block. RESULTS: HFBS at 10 kHz and 1T intensity must be applied for at least 30 min to induce post-HFBS block. However, 10 kHz HFBS at a higher intensity (2T) elicited post-HFBS block after stimulation of only 10 min; and 10 kHz HFBS at 2T for 30 min induced a longer-lasting (1-3 h) post-HFBS block that fully recovered with time. HFBS of 5-min duration at 6 kHz produced a longer period (20.4 ± 2.1 min, p < 0.05, N = 5 cats) of post-HFBS block than HFBS at 10 kHz (9.5 ± 2.1 min). CONCLUSION: HFBS of longer duration, higher intensity, and lower frequency can produce longer-lasting reversible post-HFBS block. This study is important for developing new methods to block nerve conduction by HFBS.


Asunto(s)
Estimulación Eléctrica , Bloqueo Nervioso , Conducción Nerviosa , Nervio Pudendo , Uretra/inervación , Animales , Gatos , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...