Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 11(1): 17, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959671

RESUMEN

BACKGROUND: Animal movement data are regularly used to infer foraging behaviour and relationships to environmental characteristics, often to help identify critical habitat. To characterize foraging, movement models make a set of assumptions rooted in theory, for example, time spent foraging in an area increases with higher prey density. METHODS: We assessed the validity of these assumptions by associating horizontal movement and diving of satellite-telemetered ringed seals (Pusa hispida)-an opportunistic predator-in Hudson Bay, Canada, to modelled prey data and environmental proxies. RESULTS: Modelled prey biomass data performed better than their environmental proxies (e.g., sea surface temperature) for explaining seal movement; however movement was not related to foraging effort. Counter to theory, seals appeared to forage more in areas with relatively lower prey diversity and biomass, potentially due to reduced foraging efficiency in those areas. CONCLUSIONS: Our study highlights the need to validate movement analyses with prey data to effectively estimate the relationship between prey availability and foraging behaviour.

2.
Sci Rep ; 11(1): 23330, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857790

RESUMEN

Ocean acidification (OA) affects marine organisms through various physiological and biological processes, yet our understanding of how these translate to large-scale population effects remains limited. Here, we integrated laboratory-based experimental results on the life history and physiological responses to OA of the American lobster, Homarus americanus, into a dynamic bioclimatic envelope model to project future climate change effects on species distribution, abundance, and fisheries catch potential. Ocean acidification effects on juvenile stages had the largest stage-specific impacts on the population, while cumulative effects across life stages significantly exerted the greatest impacts, albeit quite minimal. Reducing fishing pressure leads to overall increases in population abundance while setting minimum size limits also results in more higher-priced market-sized lobsters (> 1 lb), and could help mitigate the negative impacts of OA and concurrent stressors (warming, deoxygenation). However, the magnitude of increased effects of climate change overweighs any moderate population gains made by changes in fishing pressure and size limits, reinforcing that reducing greenhouse gas emissions is most pressing and that climate-adaptive fisheries management is necessary as a secondary role to ensure population resiliency. We suggest possible strategies to mitigate impacts by preserving important population demographics.


Asunto(s)
Modelos Teóricos , Nephropidae/fisiología , Alimentos Marinos/economía , Alimentos Marinos/estadística & datos numéricos , Agua de Mar/análisis , Análisis Espacio-Temporal , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Nephropidae/crecimiento & desarrollo , Alimentos Marinos/análisis
3.
Sci Adv ; 7(40): eabh0895, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597142

RESUMEN

Extreme temperature events have occurred in all ocean basins in the past two decades with detrimental impacts on marine biodiversity, ecosystem functions, and services. However, global impacts of temperature extremes on fish stocks, fisheries, and dependent people have not been quantified. Using an integrated climate-biodiversity-fisheries-economic impact model, we project that, on average, when an annual high temperature extreme occurs in an exclusive economic zone, 77% of exploited fishes and invertebrates therein will decrease in biomass while maximum catch potential will drop by 6%, adding to the decadal-scale mean impacts under climate change. The net negative impacts of high temperature extremes on fish stocks are projected to cause losses in fisheries revenues and livelihoods in most maritime countries, creating shocks to fisheries social-ecological systems particularly in climate-vulnerable areas. Our study highlights the need for rapid adaptation responses to extreme temperatures in addition to carbon mitigation to support sustainable ocean development.

4.
Ecol Lett ; 24(12): 2563-2575, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34469020

RESUMEN

Arctic sea ice loss has direct consequences for predators. Climate-driven distribution shifts of native and invasive prey species may exacerbate these consequences. We assessed potential changes by modelling the prey base of a widely distributed Arctic predator (ringed seal; Pusa hispida) in a sentinel area for change (Hudson Bay) under high- and low-greenhouse gas emission scenarios from 1950 to 2100. All changes were relatively negligible under the low-emission scenario, but under the high-emission scenario, we projected a 50% decline in the abundance of the well-distributed, ice-adapted and energy-rich Arctic cod (Boreogadus saida) and an increase in the abundance of smaller temperate-associated fish in southern and coastal areas. Furthermore, our model predicted that all fish species declined in mean body size, but a 29% increase in total prey biomass. Declines in energy-rich prey and restrictions in their spatial range are likely to have cascading effects on Arctic predators.


Asunto(s)
Cambio Climático , Phocidae , Animales , Regiones Árticas , Peces , Cubierta de Hielo
5.
PLoS One ; 15(1): e0226544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31923278

RESUMEN

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.


Asunto(s)
Océano Atlántico , Cambio Climático , Explotaciones Pesqueras , Agua de Mar/química , Factores Socioeconómicos , Fenómenos Biofísicos , Canadá , Concentración de Iones de Hidrógeno , Modelos Teóricos
6.
Sci Adv ; 5(2): eaau3855, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30820450

RESUMEN

The Paris Agreement aims to mitigate the potential impacts of climate change on ecological and social systems. Using an ensemble of climate-marine ecosystem and economic models, we explore the effects of implementing the Agreement on fish, fishers, and seafood consumers worldwide. We find that implementing the Agreement could protect millions of metric tons in annual worldwide catch of top revenue-generating fish species, as well as billions of dollars annually of fishers' revenues, seafood workers' income, and household seafood expenditure. Further, our analysis predicts that 75% of maritime countries would benefit from this protection, and that ~90% of this protected catch would occur within the territorial waters of developing countries. Thus, implementing the Paris Agreement could prove to be crucial for the future of the world's ocean ecosystems and economies.


Asunto(s)
Organismos Acuáticos , Conservación de los Recursos Naturales/economía , Modelos Económicos , Animales , Cambio Climático , Ecología , Ecosistema , Humanos , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...