Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epilepsia ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780578

RESUMEN

OBJECTIVE: This study was undertaken to validate a set of candidate biomarkers of seizure susceptibility in a retrospective, multisite case-control study, and to determine the robustness of these biomarkers derived from routinely collected electroencephalography (EEG) within a large cohort (both epilepsy and common alternative conditions such as nonepileptic attack disorder). METHODS: The database consisted of 814 EEG recordings from 648 subjects, collected from eight National Health Service sites across the UK. Clinically noncontributory EEG recordings were identified by an experienced clinical scientist (N = 281; 152 alternative conditions, 129 epilepsy). Eight computational markers (spectral [n = 2], network-based [n = 4], and model-based [n = 2]) were calculated within each recording. Ensemble-based classifiers were developed using a two-tier cross-validation approach. We used standard regression methods to assess whether potential confounding variables (e.g., age, gender, treatment status, comorbidity) impacted model performance. RESULTS: We found levels of balanced accuracy of 68% across the cohort with clinically noncontributory normal EEGs (sensitivity =61%, specificity =75%, positive predictive value =55%, negative predictive value =79%, diagnostic odds ratio =4.64, area under receiver operated characteristics curve =.72). Group level analysis found no evidence suggesting any of the potential confounding variables significantly impacted the overall performance. SIGNIFICANCE: These results provide evidence that the set of biomarkers could provide additional value to clinical decision-making, providing the foundation for a decision support tool that could reduce diagnostic delay and misdiagnosis rates. Future work should therefore assess the change in diagnostic yield and time to diagnosis when utilizing these biomarkers in carefully designed prospective studies.

2.
J Pain ; 25(6): 104466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38218509

RESUMEN

Chronic pain presents an enormous personal and economic burden and there is an urgent need for effective treatments. In a mouse model of chronic neuropathic pain, selective silencing of key neurons in spinal pain signalling networks with botulinum constructs resulted in a reduction of pain behaviours associated with the peripheral nerve. However, to establish clinical relevance it was important to know how long this silencing period lasted. Now, we show that neuronal silencing and the concomitant reduction of neuropathic mechanical and thermal hypersensitivity lasts for up to 120d following a single injection of botulinum construct. Crucially, we show that silencing and analgesia can then be reinstated with a second injection of the botulinum conjugate. Here we demonstrate that single doses of botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing and pain relief. PERSPECTIVE: This research demonstrates that botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing without toxicity following a single injection of the conjugate and have the potential for repeated dosing when silencing reverses.


Asunto(s)
Modelos Animales de Enfermedad , Neuralgia , Animales , Ratones , Neuralgia/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Dolor Crónico/tratamiento farmacológico , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/administración & dosificación , Hiperalgesia/tratamiento farmacológico , Toxinas Botulínicas/administración & dosificación , Toxinas Botulínicas/farmacología
3.
Neurobiol Dis ; 190: 106380, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114048

RESUMEN

Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Electroencefalografía , Biomarcadores , Descanso
4.
bioRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398162

RESUMEN

Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.

5.
Commun Biol ; 5(1): 1007, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151363

RESUMEN

Humans differ from each other in a wide range of biometrics, but to what extent brain connectivity varies between individuals remains largely unknown. By combining diffusion-weighted imaging (DWI) and magnetoencephalography (MEG), this study characterizes the inter-subject variability (ISV) of multimodal brain connectivity. Structural connectivity is characterized by higher ISV in association cortices including the core multiple-demand network and lower ISV in the sensorimotor cortex. MEG ISV exhibits frequency-dependent signatures, and the extent of MEG ISV is consistent with that of structural connectivity ISV in selective macroscopic cortical clusters. Across the cortex, the ISVs of structural connectivity and beta-band MEG functional connectivity are negatively associated with cortical myelin content indexed by the quantitative T1 relaxation rate measured by high-resolution 7 T MRI. Furthermore, MEG ISV from alpha to gamma bands relates to the hindrance and restriction of the white-matter tissue estimated by DWI microstructural models. Our findings depict the inter-relationship between the ISV of brain connectivity from multiple modalities, and highlight the role of tissue microstructure underpinning the ISV.


Asunto(s)
Encéfalo , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos
6.
Neuroimage ; 258: 119346, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660463

RESUMEN

+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon previous EEG microstate literature and toolboxes by including algorithms for source-space microstate analysis. +microstate includes codes for performing individual- and group-level brain microstate analysis in resting-state and task-based data including event-related potentials/fields. Functions are included to visualise and perform statistical analysis of microstate sequences, including novel advanced statistical approaches such as statistical testing for associated functional connectivity patterns, cluster-permutation topographic ANOVAs, and χ2 analysis of microstate probabilities in response to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG data are included in the toolbox, which can be used to generate artificial data with ground truth microstates and to validate the methodology. +microstate integrates with widely used toolboxes for M/EEG processing including Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to aid with accessibility, and includes wrappers for pre-existing toolboxes for brain-state estimation such as Hidden Markov modelling (HMM-MAR) and independent component analysis (FastICA) to aid with direct comparison with these techniques. In this paper, we first introduce +microstate before subsequently performing example analyses using open access datasets to demonstrate and validate the methodology. MATLAB live scripts for each of these analyses are included in +microstate, to act as a tutorial and to aid with reproduction of the results presented in this manuscript.


Asunto(s)
Encéfalo , Electroencefalografía , Algoritmos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados , Humanos
7.
Neuroimage ; 251: 119006, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35181551

RESUMEN

EEG microstate analysis is an approach to study brain states and their fast transitions in healthy cognition and disease. A key limitation of conventional microstate analysis is that it must be performed at the sensor level, and therefore gives limited anatomical insight. Here, we generalise the microstate methodology to be applicable to source-reconstructed electrophysiological data. Using simulations of a neural-mass network model, we first established the validity and robustness of the proposed method. Using MEG resting-state data, we uncovered ten microstates with distinct spatial distributions of cortical activation. Multivariate pattern analysis demonstrated that source-level microstates were associated with distinct functional connectivity patterns. We further demonstrated that the occurrence probability of MEG microstates were altered by auditory stimuli, exhibiting a hyperactivity of the microstate including the auditory cortex. Our results support the use of source-level microstates as a method for investigating brain dynamic activity and connectivity at the millisecond scale.


Asunto(s)
Encéfalo , Electroencefalografía , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cognición/fisiología , Electroencefalografía/métodos , Humanos
8.
PLoS Comput Biol ; 17(8): e1009252, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379638

RESUMEN

People with Alzheimer's disease (AD) are 6-10 times more likely to develop seizures than the healthy aging population. Leading hypotheses largely consider hyperexcitability of local cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in the general population of people with epilepsy, large-scale brain network organization additionally plays a role in determining seizure likelihood and phenotype. Here, we propose that alterations to large-scale brain network organization seen in AD may contribute to increased seizure likelihood. To test this hypothesis, we combine computational modelling with electrophysiological data using an approach that has proved informative in clinical epilepsy cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy controls. At the time of EEG acquisition, all participants were free from seizures. Whole brain functional connectivity derived from source-reconstructed EEG recordings was used to build subject-specific brain network models of seizure transitions. As cortical tissue excitability was increased in the simulations, AD simulations were more likely to transition into seizures than simulations from healthy controls, suggesting an increased group-level probability of developing seizures at a future time for AD participants. We subsequently used the model to assess seizure propensity of different regions across the cortex. We found the most important regions for seizure generation were those typically burdened by amyloid-beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of amyloid plaques. Analysis of these spatial distributions also give potential insight into mechanisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs controls. This research suggests avenues for future studies testing patients with seizures, e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate regional seizure propensity with AD pathologies.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Modelos Neurológicos , Convulsiones/etiología , Convulsiones/fisiopatología , Anciano , Anciano de 80 o más Años , Algoritmos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Estudios de Casos y Controles , Biología Computacional , Simulación por Computador , Susceptibilidad a Enfermedades , Electroencefalografía/estadística & datos numéricos , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Redes Neurales de la Computación , Convulsiones/patología
9.
Hum Brain Mapp ; 42(14): 4685-4707, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34219311

RESUMEN

Noninvasive functional neuroimaging of the human brain can give crucial insight into the mechanisms that underpin healthy cognition and neurological disorders. Magnetoencephalography (MEG) measures extracranial magnetic fields originating from neuronal activity with high temporal resolution, but requires source reconstruction to make neuroanatomical inferences from these signals. Many source reconstruction algorithms are available, and have been widely evaluated in the context of localizing task-evoked activities. However, no consensus yet exists on the optimum algorithm for resting-state data. Here, we evaluated the performance of six commonly-used source reconstruction algorithms based on minimum-norm and beamforming estimates. Using human resting-state MEG, we compared the algorithms using quantitative metrics, including resolution properties of inverse solutions and explained variance in sensor-level data. Next, we proposed a data-driven approach to reduce the atlas from the Human Connectome Project's multi-modal parcellation of the human cortex based on metrics such as MEG signal-to-noise-ratio and resting-state functional connectivity gradients. This procedure produced a reduced cortical atlas with 230 regions, optimized to match the spatial resolution and the rank of MEG data from the current generation of MEG scanners. Our results show that there is no "one size fits all" algorithm, and make recommendations on the appropriate algorithms depending on the data and aimed analyses. Our comprehensive comparisons and recommendations can serve as a guide for choosing appropriate methodologies in future studies of resting-state MEG.


Asunto(s)
Algoritmos , Corteza Cerebral/fisiología , Conectoma/normas , Magnetoencefalografía/normas , Adulto , Atlas como Asunto , Conectoma/métodos , Humanos , Magnetoencefalografía/métodos , Procesamiento de Señales Asistido por Computador
10.
Sci Rep ; 10(1): 17627, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077823

RESUMEN

The dynamics of the resting brain exhibit transitions between a small number of discrete networks, each remaining stable for tens to hundreds of milliseconds. These functional microstates are thought to be the building blocks of spontaneous consciousness. The electroencephalogram (EEG) is a useful tool for imaging microstates, and EEG microstate analysis can potentially give insight into altered brain dynamics underpinning cognitive impairment in disorders such as Alzheimer's disease (AD). Since EEG is non-invasive and relatively inexpensive, EEG microstates have the potential to be useful clinical tools for aiding early diagnosis of AD. In this study, EEG was collected from two independent cohorts of probable AD and cognitively healthy control participants, and a cohort of mild cognitive impairment (MCI) patients with four-year clinical follow-up. The microstate associated with the frontoparietal working-memory/attention network was altered in AD due to parietal inactivation. Using a novel measure of complexity, we found microstate transitioning was slower and less complex in AD. When combined with a spectral EEG measure, microstate complexity could classify AD with sensitivity and specificity > 80%, which was tested on an independent cohort, and could predict progression from MCI to AD in a small preliminary test cohort of 11 participants. EEG microstates therefore have potential to be a non-invasive functional biomarker of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Electroencefalografía/métodos , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Diagnóstico Precoz , Femenino , Humanos , Masculino , Sensibilidad y Especificidad
11.
Clin Neurophysiol ; 131(1): 225-234, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812920

RESUMEN

OBJECTIVE: The effectiveness of intracranial electroencephalography (iEEG) to inform epilepsy surgery depends on where iEEG electrodes are implanted. This decision is informed by noninvasive recording modalities such as scalp EEG. Herein we propose a framework to interrogate scalp EEG and determine epilepsy lateralization to aid in electrode implantation. METHODS: We use eLORETA to map source activities from seizure epochs recorded from scalp EEG and consider 15 regions of interest (ROIs). Functional networks are then constructed using the phase-locking value and studied using a mathematical model. By removing different ROIs from the network and simulating their impact on the network's ability to generate seizures in silico, the framework provides predictions of epilepsy lateralization. We consider 15 individuals from the EPILEPSIAE database and study a total of 62 seizures. Results were assessed by taking into account actual intracranial implantations and surgical outcome. RESULTS: The framework provided potentially useful information regarding epilepsy lateralization in 12 out of the 15 individuals (p=0.02, binomial test). CONCLUSIONS: Our results show promise for the use of this framework to better interrogate scalp EEG to determine epilepsy lateralization. SIGNIFICANCE: The framework may aid clinicians in the decision process to define where to implant electrodes for intracranial monitoring.


Asunto(s)
Electroencefalografía/métodos , Epilepsia/fisiopatología , Modelos Neurológicos , Adolescente , Adulto , Corteza Cerebral/fisiopatología , Niño , Preescolar , Simulación por Computador , Epilepsia/diagnóstico , Epilepsia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodo Preoperatorio
12.
Clin Neurophysiol ; 130(9): 1581-1595, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31306967

RESUMEN

OBJECTIVES: Functional and structural disconnection of the brain is a prevailing hypothesis to explain cognitive impairment in Alzheimer's Disease (AD). We aim to understand the link between alterations to networks and cognitive impairment using functional connectivity analysis and modelling. METHODS: EEG was recorded from 21 AD patients and 26 controls, mapped into source space using eLORETA, and functional connectivity was calculated using phase locking factor. The mini-mental state exam (MMSE) was used to assess cognitive impairment. A computational model was used to uncover mechanisms of altered functional connectivity. RESULTS: Small-worldness (SW) of functional networks decreased in AD and was positively correlated with MMSE score and the language sub-score. Reduced SW was a result of increased path lengths, predominantly localized to the temporal lobes. Combining observed differences in local oscillation frequency with reduced temporal lobe effective connectivity in the model could account for observed functional network differences. CONCLUSIONS: Temporal lobe disconnection plays a key role in cognitive impairment in AD. SIGNIFICANCE: We combine electrophysiology, neuropsychological scores, and computational modelling to provide novel insight into the relationships between the disconnection hypothesis and cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/etiología , Conectoma , Red Nerviosa , Anciano , Enfermedad de Alzheimer/fisiopatología , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico , Simulación por Computador , Electroencefalografía , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Lóbulo Temporal
13.
J Theor Biol ; 449: 23-34, 2018 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-29654854

RESUMEN

The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance.


Asunto(s)
Potenciales de Acción , Demencia/fisiopatología , Corteza Entorrinal/fisiopatología , Ritmo Gamma , Modelos Neurológicos , Animales , Demencia/patología , Corteza Entorrinal/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...