Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(7): 5244-52, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26813516

RESUMEN

One of the drawbacks of typical dye-sensitized solar cells (DSCs) is their high cost and the high electrical resistance of the transparent conducting substrate. In conventional sandwich-type DSCs, only one of the FTO substrates can be replaced by a metal substrate. We investigated an all-metal-electrode single-sided DSC in which interpenetrated bracken-like Cr electrodes were created using photolithography; mesoporous TiO2 and Pt films were deposited on the laterally separated electrodes. Thermal Pt deposition and electrodeposition methods were investigated and it was found that a cyclic electrodeposition method resulted in selective Pt deposition at room temperature with a higher device performance. Cu or ZnO sacrificial layers and TiO2 or TiO2/SiO2 porous layers were used for the spacer layer that keeps the Pt electrode away from the TiO2 mesoporous layer and the optimum results were obtained when a TiO2/SiO2 layer was used. The best device had a current density of 8.47 mA cm(-2), an open circuit voltage of 0.685 V and an efficiency of 2.44%. The results of open circuit voltage decay and electrochemical impedance spectrometry showed the formation of a high-resistivity blocking layer, which was attributed to the Cr oxide formed during thermal treatment. The efficiency may be improved further by developing low-temperature fabrication processes.

2.
Anal Biochem ; 369(2): 149-53, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17716615

RESUMEN

The electrochemistry of L-cysteine (CySH) in neutral aqueous media was investigated using carbon ionic liquid electrode (CILE). Comparative experiments were carried out using glassy carbon electrodes. At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for l-cysteine with a peak potential of 0.49V vs Ag/AgCl, showing that CILE manifests a good electrocatalytic activity toward oxidation of l-cysteine. A linear dynamic range of 2-210microM with an experimental detection limit of 2microM was obtained. The method was successfully applied to the determination of l-cysteine in a sample of soya milk. Cysteine oxidation at CILE does not result in deactivation of the electrode surface. Mechanistic studies showed that, at CILE, the overall CySH oxidation is controlled by the oxidation of the CyS(-) electroactive species.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Cisteína/análisis , Glycine max/química , Líquidos Iónicos/química , Técnicas Biosensibles/instrumentación , Catálisis , Electrodos , Proteínas de la Leche/química , Oxidación-Reducción , Potenciometría , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...