Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101230, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562450

RESUMEN

Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-ß-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC-tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.


Asunto(s)
Calgranulina B , Metiltransferasas , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Animales , Calgranulina B/genética , Calgranulina B/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamación/genética , Inflamación/metabolismo , Metilación , Metilhistidinas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
2.
MicroPubl Biol ; 20212021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33644705

RESUMEN

C. elegans spe-9 class genes encode sperm proteins with indispensable roles during fertilization. We have previously reported that spe-45 belongs to the spe-9 class, based on the finding that self-sperm of spe-45(tm3715) hermaphrodites were not consumed by fertilization. In this study, we directly observed live fertilization in the spermatheca of fem-1(hc17) females after mating with spe-45(tm3715) males. As expected, it was clearly shown that spe-45 mutant spermatozoa failed to fuse with the oocyte plasma membrane. Thus, our live imaging system for C. elegans fertilization seems to be useful for evaluation of the functions of male and female gametes.

3.
Genes Cells ; 24(3): 244-258, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30656805

RESUMEN

Caenorhabditis elegans spermiogenesis involves spermatid activation into spermatozoa. Activation occurs through either SPE-8 class-dependent or class-independent pathways. Pronase (Pron) activates the SPE-8 class-dependent pathway, whereas no in vitro tools are available to stimulate the SPE-8 class-independent pathway. Thus, whether there is a functional relationship between these two pathways is currently unclear. In this study, we found that proteinase K (ProK) can activate the SPE-8 class-independent pathway. In vitro spermiogenesis assays using Pron and ProK suggested that SPE-8 class proteins act in the hermaphrodite- and male-dependent spermiogenesis pathways and that some spermatid proteins presumably working downstream of spermiogenesis pathways, including MAP kinases, are preferentially involved in the SPE-8 class-dependent pathway. We screened a library of chemicals, and a compound that we named DDI-1 inhibited both Pron- and ProK-induced spermiogenesis. To our surprise, several DDI-1 analogues that are structurally similar to DDI-1 blocked Pron, but not ProK, induced spermiogenesis. Although the mechanism by which DDI-1 blocks spermiogenesis is yet unknown, we have begun to address this issue by selecting two DDI-1-resistant mutants. Collectively, our data support a model in which C. elegans male and hermaphrodite spermiogenesis each has its own distinct, parallel pathway.


Asunto(s)
Endopeptidasa K/metabolismo , Inhibidores de Proteasas/farmacología , Espermatogénesis , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endopeptidasa K/antagonistas & inhibidores , Endopeptidasa K/genética , Mutación , Pronasa/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología
4.
Curr Biol ; 25(24): 3225-31, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26671669

RESUMEN

The Caenorhabditis elegans spe-9 class genes, which show specific or predominant expression in the male germline, are indispensable for fertilization [1, 2]. However, due to the rapid evolution of genes involved in reproduction, we do not currently know if there are spe-9 class genes in mammals that play similar roles during fertilization to those found in C. elegans. In mice, the Izumo1 gene encodes a sperm-specific transmembrane (TM) protein with a single immunoglobulin (Ig)-like domain that is absolutely required for gamete fusion [3, 4]. In this study, we hypothesized that C. elegans has a new member of the spe-9 class genes coding for an IZUMO1-like protein. We screened C. elegans microarray data [5, 6] to identify male germline-enriched genes that encode membrane proteins with Ig-like domains. A deletion (tm3715) in one such gene (F28D1.8) caused hermaphrodites to show a male germline-dependent self-sterility, so we have named it spe-45. Mutant spe-45 worms seemed to normally undergo spermatogenesis (spermatid production by meiosis) and spermiogenesis (spermatid activation into actively motile spermatozoa). spe-45 mutant spermatozoa, however, could not complete gamete fusion, which is a characteristic of all spe-9 class mutants [1, 2]. Moreover, spe-45 self-sterile worms were rescued by a transgene expressing chimeric SPE-45 protein in which its Ig-like domain was replaced by the Ig-like domain from mouse IZUMO1. Hence, C. elegans SPE-45 and mouse IZUMO1 appear to have retained a common function(s) that is required during fertilization.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Fertilización , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Animales , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , Espermatogénesis
5.
Gen Comp Endocrinol ; 179(1): 14-21, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22850217

RESUMEN

Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them.


Asunto(s)
Apoptosis/fisiología , Metamorfosis Biológica/fisiología , Proteínas de Unión al ARN/fisiología , Cola (estructura animal)/citología , Proteínas de Xenopus/fisiología , Animales , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/genética , Cola (estructura animal)/metabolismo , Hormonas Tiroideas/fisiología , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
6.
Dev Growth Differ ; 44(2): 127-34, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11940099

RESUMEN

Two monoclonal antibodies which reacted specifically with the notochord of the early Cynops pyrrhogaster embryo were screened. The antigen molecules were detected within and around the notochord. They were first found mostly between the neural plate and the dorsal part of the notochord in the early neurula (stage 15). They were subsequently detected between the notochord and the somite in the advanced embryo, and they were last detected between the notochord and the underlying endoderm. Whole-mount labeling indicated that the antigen molecules were first detected in the anterior half of the notochord in the early neurula (stage 15). The signals gradually spread along the anterior-posterior axis, especially towards the posterior region. This fact suggests that notochord differentiation progresses from the anterior region which first receives the dorsal mesoderm-inducing signals released horizontally from the lower dorsal marginal zone during early gastrulation. The present study suggested that: (i) notochord differentiation proceeds from the anterior region; and (ii) secretion of the antigen molecules results in the drawing of a boundary between the adjacent tissues.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos/análisis , Diferenciación Celular/fisiología , Notocorda/embriología , Salamandridae/embriología , Animales , Antígenos/inmunología , Inmunohistoquímica , Notocorda/citología , Notocorda/inmunología
7.
Rouxs Arch Dev Biol ; 204(6): 400-405, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28305741

RESUMEN

A maternal protein showing a unique distribution during early Cynops embryogenesis was screened by monoclonal antibody. The antigen protein, designated as ABP-25 (animal blastomere protein, molecular weight 25,000), was distributed uniformly in the uncleaved egg and concentrated into blastomeres of the animal half during cleavage. At the blastula stage, ABP-25 was definitely localized in cells of the animal half and a polarized distribution was observed within the cytoplasm. During gastrulation, immunohistochemical analysis indicated that the reactivity of the marginal zone (presumptive mesoderm) to the monoclonal antibody ABP-25 decreased after involution. At the end of gastrulation, a polarized distribution was still clearly observed in the ventral epidermis, but not in the neuroectoderm. Both Western and Northern blots indicated that the amount of antigen protein and the intensity of gene expresion were almost constant until the neurula stage. The deduced amino acid sequence of the ABP-25 cDNA showed a strong homology (84%) with that of the pag gene associated with cell proliferation.

8.
Dev Growth Differ ; 33(6): 639-649, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37281806

RESUMEN

We isolated a mouse monoclonal antibody (FAD-II) that disrupts cell-substratum adhesion of amphibian (Xenopus laevis) epithelial cells and endothelial cells. The effect of the antibody was cell-type specific, and the antibody had no effect on fibroblastic cells while fibronectin peptide blocked cell-substratum adhesion of all the cell types examined. In developing frog embryos, the epitopes recognized by the antibody were detected in pronephrotic ducts and in other tissue cells of embryos (from stage 33/34 afterwards). In adult tissues, the antibody mainly recognized antigens in extracelluar matrices. The antigens recognized by the antibody seems to be novel glycoepitopes in frog cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...