Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 93: 37-44, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30579936

RESUMEN

Although a previous study using ginbuna crucian carp suggested that cell-mediated immunity can be induced by the oral administration of inactivated viruses, which are exogenous antigens, there is no direct evidence that CD8+ cytotoxic T cells (CTLs) in teleost fish are generated by vaccination with exogenous antigens. In the present study, we investigated whether antigen-specific CD8+ CTLs in ginbuna crucian carp can be elicited by intestinal immunization with an exogenous antigen without any adjuvant. The IFNγ-1 and T-bet mRNA expressions were up-regulated in intestinal leukocytes following the administration of formalin-inactivated crucian hematopoietic necrosis virus (FI-CHNV), whereas the down-regulation of these genes was observed in kidney leukocytes. Furthermore, an increase in the percentage of proliferating CD8+ cells was detected in the posterior portion of the hindgut, suggesting that the virus-specific CTLs are locally generated in this site. In addition, cell-mediated cytotoxicity against CHNV-infected syngeneic cells and the in vivo inhibition of viral replication were induced by immunization with FI-CHNV. Unexpectedly, intraperitoneal immunization with FI-CHNV induced a type I helper T cell (Th1)-response in the intestine, but not in the kidney; however, its effect was slightly lower than that reported after intestinal immunization. These findings suggest that the posterior portion of the intestine is an important site for generating virus-specific CTLs by vaccination with the inactivated vaccine.


Asunto(s)
Carpas/inmunología , Enfermedades de los Peces/inmunología , Rhabdoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Animales , Enfermedades de los Peces/virología , Interferón gamma/genética , Intestinos/citología , Intestinos/inmunología , Riñón/inmunología , ARN Mensajero/genética , Proteínas de Dominio T Box/genética , Vacunación
2.
Harmful Algae ; 51: 97-106, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28003065

RESUMEN

In this study, the Kaneka DNA chromatography chip (KDCC) for the Alexandrium species was successfully developed for simultaneous detection of five Alexandrium species. This method utilizes a DNA-DNA hybridization technology. In the PCR process, specifically designed tagged-primers are used, i.e. a forward primer consisting of a tag domain, which can conjugate with gold nanocolloids on the chip, and a primer domain, which can anneal/amplify the target sequence. However, the reverse primer consists of a tag domain, which can hybridize to the solid-phased capture probe on the chip, and a primer domain, which can anneal/amplify the target sequence. As a result, a red line that originates from gold nanocolloids appears as a positive signal on the chip, and the amplicon is detected visually by the naked eye. This technique is simple, because it is possible to visually detect the target species soon after (<5min) the application of 2µL of PCR amplicon and 65µL of development buffer to the sample pad of the chip. Further, this technique is relatively inexpensive and does not require expensive laboratory equipment, such as real-time Q-PCR machines or DNA microarray detectors, but a thermal cycler. Regarding the detection limit of KDCC for the five Alexandrium species, it varied among species and it was <0.1-10pg and equivalent to 5-500 copies of rRNA genes, indicating that the technique is sensitive enough for practical use to detect several cells of the target species from 1L of seawater. The detection sensitivity of KDCC was also evaluated with two different techniques, i.e. a multiplex-PCR and a digital DNA hybridization by digital DNA chip analyzer (DDCA), using natural plankton assemblages. There was no significant difference in the detection sensitivity among the three techniques, suggesting KDCC can be readily used to monitor the HAB species.

3.
Gene ; 576(2 Pt 1): 667-75, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26475937

RESUMEN

In this study, we investigated the influence of diurnal sampling bias on the community structure of plankton by comparing the biodiversity among seawater samples (n=9) obtained every 3h for 24h by using massively parallel sequencing (MPS)-based plankton monitoring at a fixed point conducted at Himedo seaport in Yatsushiro Sea, Japan. The number of raw operational taxonomy units (OTUs) and OTUs after re-sampling was 507-658 (558 ± 104, mean ± standard deviation) and 448-544 (467 ± 81), respectively, indicating high plankton biodiversity at the sampling location. The relative abundance of the top 20 OTUs in the samples from Himedo seaport was 48.8-67.7% (58.0 ± 5.8%), and the highest-ranked OTU was Pseudo-nitzschia species (Bacillariophyta) with a relative abundance of 17.3-39.2%, followed by Oithona sp. 1 and Oithona sp. 2 (Arthropoda). During seawater sampling, the semidiurnal tidal current having an amplitude of 0.3ms(-1) was dominant, and the westward residual current driven by the northeasterly wind was continuously observed during the 24-h monitoring. Therefore, the relative abundance of plankton species apparently fluctuated among the samples, but no significant difference was noted according to G-test (p>0.05). Significant differences were observed between the samples obtained from a different locality (Kusuura in Yatsushiro Sea) and at different dates, suggesting that the influence of diurnal sampling bias on plankton diversity, determined using the MPS-based survey, was not significant and acceptable.


Asunto(s)
Biodiversidad , Ritmo Circadiano , Genes de Plantas , Fitoplancton/clasificación , Fitoplancton/genética , ARN Ribosómico 18S/genética , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA