Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20019, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973808

RESUMEN

Lumbar spinal stenosis (LSS) is a degenerative disease characterized by intermittent claudication and numbness in the lower extremities. These symptoms are caused by the compression of nerve tissue in the lumbar spinal canal. Ligamentum flavum (LF) hypertrophy and spinal epidural lipomatosis in the spinal canal are known to contribute to stenosis of the spinal canal: however, detailed mechanisms underlying LSS are still not fully understood. Here, we show that surgically harvested LFs from LSS patients exhibited significantly increased thickness when transthyretin (TTR), the protein responsible for amyloidosis, was deposited in LFs, compared to those without TTR deposition. Multiple regression analysis, which considered age and BMI, revealed a significant association between LF hypertrophy and TTR deposition in LFs. Moreover, TTR deposition in LF was also significantly correlated with epidural fat (EF) thickness based on multiple regression analyses. Mesenchymal cell differentiation into adipocytes was significantly stimulated by TTR in vitro. These results suggest that TTR deposition in LFs is significantly associated with increased LF hypertrophy and EF thickness, and that TTR promotes adipogenesis of mesenchymal cells. Therapeutic agents to prevent TTR deposition in tissues are currently available or under development, and targeting TTR could be a potential therapeutic approach to inhibit LSS development and progression.


Asunto(s)
Ligamento Amarillo , Estenosis Espinal , Humanos , Estenosis Espinal/complicaciones , Ligamento Amarillo/metabolismo , Prealbúmina/metabolismo , Canal Medular/metabolismo , Hipertrofia/metabolismo , Vértebras Lumbares/metabolismo
2.
Bone ; 176: 116865, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562661

RESUMEN

Hip fractures are fragility fractures frequently seen in persons over 80-years-old. Although various factors, including decreased bone mineral density and a history of falls, are reported as hip fracture risks, few large-scale studies have confirmed their relevance to individuals older than 80, and tools to assess contributions of various risks to fracture development and the degree of risk are lacking. We recruited 1395 fresh hip fracture patients and 1075 controls without hip fractures and comprehensively evaluated various reported risk factors and their association with hip fracture development. We initially constructed a predictive model using Extreme Gradient Boosting (XGBoost), a machine learning algorithm, incorporating all 40 variables and evaluated the model's performance using the area under the receiver operating characteristic curve (AUC), yielding a value of 0.87. We also employed SHapley Additive exPlanation (SHAP) values to evaluate each feature importance and ranked the top 20. We then used a stepwise selection method to determine key factors sequentially until the AUC reached a plateau nearly equal to that of all variables and identified the top 10 sufficient to evaluate hip fracture risk. For each, we determined the cutoff value for hip fracture occurrence and calculated scores of each variable based on the respective feature importance. Individual scores were: serum 25(OH)D levels (<10 ng/ml, score 7), femoral neck T-score (<-3, score 5), Barthel index score (<100, score 3), maximal handgrip strength (<18 kg, score 3), GLFS-25 score (≥24, score 2), number of falls in previous 12 months (≥3, score 2), serum IGF-1 levels (<50 ng/ml, score 2), cups of tea/day (≥5, score -2), use of anti-osteoporosis drugs (yes, score -2), and BMI (<18.5 kg/m2, score 1). Using these scores, we performed receiver operating characteristic (ROC) analysis and the resultant optimal cutoff value was 7, with a specificity of 0.78, sensitivity of 0.75, and AUC of 0.85. These ten factors and the scoring system may represent tools useful to predict hip fracture.


Asunto(s)
Fracturas de Cadera , Osteoporosis , Humanos , Anciano , Anciano de 80 o más Años , Densidad Ósea , Fuerza de la Mano , Medición de Riesgo/métodos , Fracturas de Cadera/etiología , Osteoporosis/complicaciones , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...