Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 146(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31784459

RESUMEN

Mechanical forces can elicit a mechanotransduction response through junction-associated proteins. In contrast to the wealth of knowledge available for focal adhesions and adherens junctions, much less is known about mechanotransduction at hemidesmosomes. Here, we focus on the C. elegans plectin homolog VAB-10A, the only evolutionary conserved hemidesmosome component. In C. elegans, muscle contractions induce a mechanotransduction pathway in the epidermis through hemidesmosomes. We used CRISPR to precisely remove spectrin repeats (SRs) or a partially hidden Src homology 3 (SH3) domain within the VAB-10 plakin domain. Deleting the SH3 or SR8 domains in combination with mutations affecting mechanotransduction, or just the part of SR5 shielding the SH3 domain, induced embryonic elongation arrest because hemidesmosomes collapse. Notably, recruitment of GIT-1, the first mechanotransduction player, requires the SR5 domain and the hemidesmosome transmembrane receptor LET-805. Furthermore, molecular dynamics simulations confirmed that forces acting on VAB-10 could make the central SH3 domain, otherwise in contact with SR4, available for interaction. Collectively, our data strongly indicate that the plakin domain plays a central role in mechanotransduction and raise the possibility that VAB-10/plectin might act as a mechanosensor.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Mecanotransducción Celular/genética , Morfogénesis/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Embrión no Mamífero , Epidermis/embriología , Epidermis/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Imagen de Lapso de Tiempo
2.
J Cell Biol ; 211(1): 27-37, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459596

RESUMEN

Exosomes are secreted vesicles arising from the fusion of multivesicular bodies (MVBs) with the plasma membrane. Despite their importance in various processes, the molecular mechanisms controlling their formation and release remain unclear. Using nematodes and mammary tumor cells, we show that Ral GTPases are involved in exosome biogenesis. In Caenorhabditis elegans, RAL-1 localizes at the surface of secretory MVBs. A quantitative electron microscopy analysis of RAL-1-deficient animals revealed that RAL-1 is involved in both MVB formation and their fusion with the plasma membrane. These functions do not involve the exocyst complex, a common Ral guanosine triphosphatase (GTPase) effector. Furthermore, we show that the target membrane SNARE protein SYX-5 colocalizes with a constitutively active form of RAL-1 at the plasma membrane, and MVBs accumulate under the plasma membrane when SYX-5 is absent. In mammals, RalA and RalB are both required for the secretion of exosome-like vesicles in cultured cells. Therefore, Ral GTPases represent new regulators of MVB formation and exosome release.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Exosomas/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Unión al GTP ral/fisiología , Animales , Caenorhabditis elegans/citología , Membrana Celular/enzimología , Fusión de Membrana , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...