Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38076986

RESUMEN

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

2.
Commun Biol ; 6(1): 914, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673949

RESUMEN

Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.


Asunto(s)
Dopamina , Motivación , Animales , Ratas , Sustancia Negra , Cuerpo Estriado , Neuronas Dopaminérgicas
3.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620158

RESUMEN

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Asunto(s)
Canales Iónicos , Primates , Animales , Masculino , Reproducibilidad de los Resultados , Imagen Multimodal , Macaca
4.
Nat Commun ; 14(1): 4762, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553329

RESUMEN

Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.


Asunto(s)
Dependovirus , Parvovirinae , Animales , Dependovirus/metabolismo , Transducción Genética , Vectores Genéticos/genética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Transgenes , Primates/genética , Parvovirinae/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Neuronas/metabolismo
5.
eNeuro ; 10(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468328

RESUMEN

We investigated morphologic changes in the corticospinal tract (CST) to understand the mechanism underlying recovery of hand function after lesion of the CST at the C4/C5 border in seven macaque monkeys. All monkeys exhibited prominent recovery of precision grip success ratio within a few months. The trajectories and terminals of CST from the contralesional (n = 4) and ipsilesional (n = 3) hand area of primary motor cortex (M1) were investigated at 5-29 months after the injury using an anterograde neural tracer, biotinylated dextran amine (BDA). Reorganization of the CST was assessed by counting the number of BDA-labeled axons and bouton-like swellings in the gray and white matters. Rostral to the lesion (at C3), the number of axon collaterals of the descending axons from both contralesional and ipsilesional M1 entering the ipsilesional and contralesional gray matter, respectively, were increased. Caudal to the lesion (at C8), axons originating from the contralesional M1, descending in the preserved gray matter around the lesion, and terminating in ipsilesional Laminae VI/VII and IX were observed. In addition, axons and terminals from the ipsilesional M1 increased in the ipsilesional Lamina IX after recrossing the midline, which were not observed in intact monkeys. Conversely, axons originating from the ipsilesional M1 and directed toward the contralesional Lamina VII decreased. These results suggest that multiple reorganizations of the corticospinal projections to spinal segments both rostral and caudal to the lesion originating from bilateral M1 underlie a prominent recovery in long-term after spinal cord injury.


Asunto(s)
Dedos , Traumatismos de la Médula Espinal , Animales , Dedos/patología , Destreza Motora , Tractos Piramidales , Traumatismos de la Médula Espinal/patología , Axones/patología , Macaca mulatta , Médula Espinal/patología , Recuperación de la Función
6.
Nat Commun ; 14(1): 2282, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085491

RESUMEN

Seeking out good and avoiding bad objects is critical for survival. In practice, objects are rarely good every time or everywhere, but only at the right time or place. Whereas the basal ganglia (BG) are known to mediate goal-directed behavior, for example, saccades to rewarding objects, it remains unclear how such simple behaviors are rendered contingent on higher-order factors, including environmental context. Here we show that amygdala neurons are sensitive to environments and may regulate putative dopamine (DA) neurons via an inhibitory projection to the substantia nigra (SN). In male macaques, we combined optogenetics with multi-channel recording to demonstrate that rewarding environments induce tonic firing changes in DA neurons as well as phasic responses to rewarding events. These responses may be mediated by disinhibition via a GABAergic projection onto DA neurons, which in turn is suppressed by an inhibitory projection from the amygdala. Thus, the amygdala may provide an additional source of learning to BG circuits, namely contingencies imposed by the environment.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Masculino , Animales , Neuronas Dopaminérgicas/metabolismo , Potenciales de Acción/fisiología , Dopamina/metabolismo , Sustancia Negra/metabolismo , Amígdala del Cerebelo/metabolismo
7.
Sci Adv ; 9(16): eadf4888, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37075119

RESUMEN

Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.


Asunto(s)
Barrera Hematoencefálica , Enfermedad de Parkinson , Animales , Barrera Hematoencefálica/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/genética , Encéfalo/metabolismo , Macaca , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética
8.
Mol Brain ; 16(1): 31, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966302

RESUMEN

Cognitive functions depend on the time of day in various organisms. Previously, we found that 24-h recognition memory performance of nocturnal mice changes diurnally through SCOP protein-dependent regulation. It remains unknown whether diurnal change and SCOP-dependent regulation of memory performance are conserved across species with diurnal/nocturnal habits. We tested whether the memory performance of diurnal Japanese macaques depends on the time of day. The memory association between bitter taste of drinking water and the nozzle color of the water bottle was established during the light period of the day to evaluate of memory performance for macaques. Here we found diurnal variation of declarative memory in Japanese macaques. The middle of the daytime is the most effective time for memory performance during the light period. To assess whether SCOP is involved in declarative memory performance, we interfered with SCOP expression by using lentiviral vector expressing shRNA against Scop in the hippocampus of Japanese macaques. Scop knockdown in the hippocampus abrogated the memory performance in the middle of the daytime. Our results implicate that SCOP in the hippocampus is necessary for the diurnal rhythm of the memory system and that the SCOP-dependent memory regulation system may be conserved in mammals.


Asunto(s)
Cognición , Macaca fuscata , Animales , Ritmo Circadiano/fisiología , Hipocampo/metabolismo , Reconocimiento en Psicología
9.
Nat Commun ; 14(1): 971, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854724

RESUMEN

Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool-designer receptors exclusively activated by designer drugs (DREADDs)-for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model.


Asunto(s)
Líquidos Corporales , Convulsiones , Masculino , Animales , Encéfalo , Bicuculina/farmacología , Antagonistas de Receptores de GABA-A , Macaca
10.
PLoS One ; 18(1): e0280649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656905

RESUMEN

Both Achilles and masticatory muscle tendons are large load-bearing structures, and excessive mechanical loading leads to hypertrophic changes in these tendons. In the maxillofacial region, hyperplasia of the masticatory muscle tendons and aponeurosis affect muscle extensibility resulting in limited mouth opening. Although gene expression profiles of Achilles and patellar tendons under mechanical strain are well investigated in rodents, the gene expression profile of the masticatory muscle tendons remains unexplored. Herein, we examined the gene expression pattern of masticatory muscle tendons and compared it with that of Achilles tendons under tensile strain conditions in the Japanese macaque Macaca fuscata. Primary tenocytes isolated from the masticatory muscle tendons (temporal tendon and masseter aponeurosis) and Achilles tendons were mechanically loaded using the tensile force and gene expression was analyzed using the next-generation sequencing. In tendons exposed to tensile strain, we identified 1076 differentially expressed genes with a false discovery rate (FDR) < 10-10. To identify genes that are differentially expressed in temporal tendon and masseter aponeurosis, an FDR of < 10-10 was used, whereas the FDR for Achilles tendons was set at > 0.05. Results showed that 147 genes are differentially expressed between temporal tendons and masseter aponeurosis, out of which, 125 human orthologs were identified using the Ensemble database. Eight of these orthologs were related to tendons and among them the expression of the glycoprotein nmb and sphingosine kinase 1 was increased in temporal tendons and masseter aponeurosis following exposure to tensile strain. Moreover, the expression of tubulin beta 3 class III, which promotes cell cycle progression, and septin 9, which promotes cytoskeletal rearrangements, were decreased in stretched Achilles tendon cells and their expression was increased in stretched masseter aponeurosis and temporal tendon cells. In conclusion, cyclic strain differentially affects gene expression in Achilles tendons and tendons of the masticatory muscles.


Asunto(s)
Tendón Calcáneo , Tendones , Animales , Humanos , Tendón Calcáneo/metabolismo , Perfilación de la Expresión Génica , Macaca fuscata , Músculo Masetero/metabolismo , Músculos Masticadores/metabolismo , Tendones/metabolismo
11.
Sci Rep ; 13(1): 82, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596827

RESUMEN

In primates, neurons giving rise to the corticospinal tract (CST) are distributed in several motor-related areas of the frontal lobe, such as the primary motor cortex (M1), the supplementary motor area (SMA), and the dorsal and ventral divisions of the premotor cortex (PMd, PMv). Recently, we have shown in macaque monkeys that the morphology of basal dendrites of CST neurons, i.e., large layer V pyramidal neurons, varies among the digit regions of the motor-related areas. Here, we investigated the alterations in basal dendrite morphology of CST neurons after spinal cord injury (SCI). In our monkey model, both the complexity and the spine density of basal dendrites were highly decreased throughout the areas. Notably, these events were less prominent for the PMd than for the M1, SMA, and PMv. In analyzing the density changes post-SCI of the filopodia-, thin-, stubby-, and mushroom-type spines, it was found that the density of filopodia-type spines was increased for all areas, whereas the other types of spines exhibited density decreases. Such spine density reductions were so limited for the PMd as compared to the other areas. The observed plastic changes of CST neurons may contribute to the recovery from impaired motor functions caused by SCI.


Asunto(s)
Corteza Motora , Traumatismos de la Médula Espinal , Animales , Corteza Motora/fisiología , Macaca , Haplorrinos , Neuronas/fisiología , Primates , Células Piramidales , Tractos Piramidales/fisiología
12.
Brain Struct Funct ; 228(5): 1107-1123, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36399210

RESUMEN

Night monkeys (Aotus) are the only genus of monkeys within the Simian lineage that successfully occupy a nocturnal environmental niche. Their behavior is supported by their sensory organs' distinctive morphological features; however, little is known about their evolutionary adaptations in sensory regions of the cerebral cortex. Here, we investigate this question by exploring the cortical organization of night monkeys using high-resolution in-vivo brain MRI and comparative cortical-surface T1w/T2w myeloarchitectonic mapping. Our results show that the night monkey cerebral cortex has a qualitatively similar but quantitatively different pattern of cortical myelin compared to the diurnal macaque and marmoset monkeys. T1w/T2w myelin and its gradient allowed us to parcellate high myelin areas, including the middle temporal complex (MT +) and auditory cortex, and a low-myelin area, Brodmann area 7 (BA7) in the three species, despite species differences in cortical convolutions. Relative to the total cortical-surface area, those of MT + and the auditory cortex are significantly larger in night monkeys than diurnal monkeys, whereas area BA7 occupies a similar fraction of the cortical sheet in all three species. We propose that the selective expansion of sensory areas dedicated to visual motion and auditory processing in night monkeys may reflect cortical adaptations to a nocturnal environment.


Asunto(s)
Aotidae , Vaina de Mielina , Animales , Corteza Cerebral , Imagen por Resonancia Magnética/métodos , Neuroimagen , Macaca/anatomía & histología , Mapeo Encefálico
13.
Cereb Cortex ; 33(3): 895-915, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35323915

RESUMEN

A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.


Asunto(s)
Pulvinar , Corteza Visual , Animales , Colículos Superiores/fisiología , Emociones , Pulvinar/fisiología , Primates
14.
Commun Biol ; 5(1): 1243, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411342

RESUMEN

Like humans, common marmoset monkeys utilize family cooperation for infant care, but the neural mechanisms underlying primate parental behaviors remain largely unknown. We investigated infant care behaviors of captive marmosets in family settings and caregiver-infant dyadic situations. Marmoset caregivers exhibited individual variations in parenting styles, comprised of sensitivity and tolerance toward infants, consistently across infants, social contexts and multiple births. Seeking the neural basis of these parenting styles, we demonstrated that the calcitonin receptor-expressing neurons in the marmoset medial preoptic area (MPOA) were transcriptionally activated during infant care, as in laboratory mice. Further, site-specific neurotoxic lesions of this MPOA subregion, termed the cMPOA, significantly reduced alloparental tolerance and total infant carrying, while sparing general health and other social or nonsocial behaviors. These results suggest that the molecularly-defined neural site cMPOA is responsible for mammalian parenting, thus provide an invaluable model to study the neural basis of parenting styles in primates.


Asunto(s)
Callithrix , Área Preóptica , Humanos , Ratones , Animales , Receptores de Calcitonina/genética , Neuronas , Mamíferos
15.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794012

RESUMEN

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Asunto(s)
Núcleo Caudado , Motivación , Animales , Núcleo Caudado/fisiología , Objetivos , Humanos , Masculino , Corteza Prefrontal/fisiología , Recompensa
16.
Front Neural Circuits ; 16: 847100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463202

RESUMEN

Removal of the monosynaptic corticospinal pathway (CSP) terminating within the forelimb segments severely impairs manual dexterity. Functional recovery from the monosynaptic CSP lesion can be achieved through the remaining multisynaptic CSP toward the forelimb segments. In the present study, we applied retrograde transsynaptic labeling with rabies virus to a monkey model of spinal cord injury. By injecting the virus into the spinal forelimb segments immediately after the monosynaptic CSP lesion, we showed that the contralateral primary motor cortex (M1), especially its caudal and bank region (so-called "new" M1), was the principal origin of the CSP linking the motor cortex to the spinal forelimb segments disynaptically (disynaptic CSP). This forms a striking contrast to the architecture of the monosynaptic CSP that involves extensively other motor-related areas, together with M1. Next, the rabies injections were made at the recovery period of 3 months after the monosynaptic CSP lesion. The second-order labeled neurons were located in the ipsilateral as well as in the contralateral "new" M1. This indicates that the disynaptic CSP input from the ipsilateral "new" M1 is recruited during the motor recovery from the monosynaptic CSP lesion. Our results suggest that the disynaptic CSP is reorganized to connect the ipsilateral "new" M1 to the forelimb motoneurons for functional compensation after the monosynaptic CSP lesion.


Asunto(s)
Tractos Piramidales , Traumatismos de la Médula Espinal , Animales , Miembro Anterior/fisiología , Macaca , Neuronas Motoras/fisiología , Tractos Piramidales/fisiología , Médula Espinal/fisiología
17.
Sci Adv ; 8(11): eabi6375, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302853

RESUMEN

The processing of stress responses involves brain-wide communication among cortical and subcortical regions; however, the underlying mechanisms remain elusive. Here, we show that the claustrum (CLA) is crucial for the control of stress-induced anxiety-related behaviors. A combined approach using brain activation mapping and machine learning showed that the CLA activation serves as a reliable marker of exposure to acute stressors. In TRAP2 mice, which allow activity-dependent genetic labeling, chemogenetic activation of the CLA neuronal ensemble tagged by acute social defeat stress (DS) elicited anxiety-related behaviors, whereas silencing of the CLA ensemble attenuated DS-induced anxiety-related behaviors. Moreover, the CLA received strong input from DS-activated basolateral amygdala neurons, and its circuit-selective optogenetic photostimulation temporarily elicited anxiety-related behaviors. Last, silencing of the CLA ensemble during stress exposure increased resistance to chronic DS. The CLA thus bidirectionally controls stress-induced emotional responses, and its inactivation can serve as a preventative strategy to increase stress resilience.

18.
J Neurochem ; 161(2): 129-145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35233765

RESUMEN

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Asunto(s)
Biopterinas , Fenilcetonurias , Animales , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Dihidropteridina Reductasa , Miedo , Humanos , Ratones , Fenilalanina , Fenilcetonurias/genética , Fenilcetonurias/metabolismo
19.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35110390

RESUMEN

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Asunto(s)
Clozapina , Drogas de Diseño , Animales , Control de la Conducta , Clozapina/farmacología , Drogas de Diseño/farmacología , Femenino , Macaca mulatta , Masculino , Neuronas
20.
Front Neuroanat ; 16: 809446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185482

RESUMEN

The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...