Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thorac Cardiovasc Surg ; 167(2): 439-449.e6, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37356475

RESUMEN

OBJECTIVE: This study reviewed the application of curved and bileaflet designs to pulmonary expanded polytetrafluoroethylene conduits with diameters of 10 to 16 mm and characterized this conduit on in vitro experiment, including particle image velocimetry. METHODS: All patients who received this conduit between 2010 and 2022 were evaluated. Three 16-mm conduits were tested in a circulatory simulator at different cardiac outputs (1.5-3.6 L/minute) and bending angles (130°-150°). RESULTS: Fifty consecutive patients were included. The median operative body weight was 8.4 kg (range, 2.6-12 kg); 10-, 12-, 14-, and 16-mm conduits were used in 1, 4, 6, and 39 patients, respectively. In 34 patients, the conduit was implanted in a heterotopic position. The overall survival rate was 89% at 8 years with 3 nonvalve-related deaths. There were 10 conduit replacements; 5 16-mm conduits (after 8 years) and 1 12-mm conduit (after 6 years) due to conduit stenosis, and the remaining 4 for reasons other than conduit failure. Freedom from conduit replacement was 89% and 82% at 5 and 8 years, respectively. Linear mixed-effects models with echocardiographic data implied that 16-mm conduits were durable with a peak velocity <3.5 m/second and without moderate/severe regurgitation until the patient's weight reached 25 kg. In experiments, peak transvalvular pressure gradients were 11.5 to 25.5 mm Hg, regurgitant fractions were 8.0% to 14.4%, and peak Reynolds shear stress in midsystolic phase was 29 to 318 Pa. CONCLUSIONS: Our conduits with curved and bileaflet designs have acceptable clinical durability and proven hydrodynamic profiles, which eliminate valve regurgitation and serve as a reliable bridge to subsequent conduit replacement.


Asunto(s)
Cardiopatías Congénitas , Prótesis Valvulares Cardíacas , Obstrucción del Flujo Ventricular Externo , Humanos , Politetrafluoroetileno , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/cirugía , Estudios Retrospectivos , Prótesis Vascular , Obstrucción del Flujo Ventricular Externo/diagnóstico por imagen , Obstrucción del Flujo Ventricular Externo/cirugía , Resultado del Tratamiento
2.
Sci Rep ; 9(1): 19859, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882780

RESUMEN

The high-speed liquid-jet velocity achieved using an injector strongly depends on the piston motion, physical property of the liquid, and container shape of the injector. Herein, we investigate the liquid ejection mechanism and a technique for estimating the ejection velocity of a high-speed liquid jet using a pyro jet injector (PJI). We apply a two-dimensional numerical simulation with an axisymmetric approximation using the commercial software ANSYS/FLUENT. To gather the input data applied during the numerical simulation, the piston motion is captured with a high-speed CMOS camera, and the velocity of the piston is measured using motion tracking software. To reproduce the piston motion during the numerical simulation, the boundary-fitted coordinates and a moving boundary method are employed. In addition, we propose a fluid dynamic model (FDM) for estimating the high-speed liquid-jet ejection velocity based on the piston velocity. Using the FDM, we consider the liquid density variation but neglect the effects of the liquid viscosity on the liquid ejection. Our results indicate that the liquid-jet ejection velocity estimated by the FDM corresponds to that predicted by ANSYS/FLUENT for several different ignition-powder weights. This clearly shows that a high-speed liquid-jet ejection velocity can be estimated using the presented FDM when considering the variation in liquid density but neglecting the liquid viscosity. In addition, some characteristics of the presented PJI are observed, namely, (1) a very rapid piston displacement within 0.1 ms after a powder explosion, (2) piston vibration only when a large amount of powder is used, and (3) a pulse jet flow with a temporal pulse width of 0.1 ms.

3.
Sci Rep ; 6: 37059, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841325

RESUMEN

The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc-0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...