Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(28): 32319-32329, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35816704

RESUMEN

The high design flexibility of organic semiconductors should lead to diverse and complex electronic functions. However, currently available high-performance organic semiconductors are limited in variety; most of p-type materials are based on thienoacenes or related one-dimensionally (1D) extended π-conjugated systems. In an effort to expand the diversity of organic semiconductors, we are working on the development of tetrabenzoporphyrin (BP) derivatives as active-layer components of organic electronic devices. BP is characterized by its large, rigid two-dimensionally (2D) extended π-framework with high light absorptivity and therefore is promising as a core building unit of organic semiconductors for optoelectronic applications. Herein, we demonstrate that BP derivatives can afford field-effect hole mobilities of >4 cm2 V-1 s-1 upon careful tuning of substituents. Comparative analysis of a series of 5,15-bis(n-alkyldimethylsilylethynyl)tetrabenzoporphyrins reveals that linear alkyl substituents disrupt the π-π stacking of BP cores, unlike the widely observed "fastener effect" for 1D extended π-systems. The n-octyl and n-dodecyl groups have the best balance between high solution processability and minimal π-π stacking disruption, leading to superior hole mobilities in solution-processed thin films. The resulting thin films show high thermal stability wherein the field-effect hole mobility stays above 1 cm2 V-1 s-1 even after heating at 160 °C in air, reflecting the tight packing of large BP units. These findings will serve as a good basis for extracting the full potential of 2D extended π-frameworks and thus for increasing the structural or functional diversities of high-performance organic semiconductors.

2.
J Org Chem ; 85(1): 168-178, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31711287

RESUMEN

Tetrabenzoporphyrin (BP) holds attractive characteristics for optoelectronic applications, such as the large π-conjugated framework and high photoabsorption capability. However, its use in organic solar cells (OSCs) has been limited because of the extremely low solubility that hampers direct solution processing and also the high frontier-orbital energies that lead to low open-circuit voltage (VOC). Herein, we examine BP derivatives equipped with multiple strongly electron-withdrawing groups for photovoltaic applications. The derivatives are generated in thin films through a thermal precursor approach, wherein the corresponding bicyclo[2.2.2]octadiene-fused porphyrin derivatives are solution-cast, and then annealed to carry out the in situ retro-Diels-Alder reaction. The frontier-orbital energies of the resulting derivatives are effectively stabilized as compared to pristine BP to such a degree that they afford high VOC of up to 0.94 V when used as a donor or can even work as a new class of nonfullerene acceptor in OSCs. Single-crystal X-ray diffraction analyses demonstrate that the conformation of the BP framework largely varies from being near planar to highly curved depending on its substituents. The morphology of polymer:BP-derivative bulk-heterojunction films prepared by the thermal precursor approach also varies between the BP derivatives. These results can greatly extend the scope of both molecular design and morphology control for utilization of the BP chromophore toward achieving viable organic optoelectronic devices.

3.
J Am Chem Soc ; 141(25): 10007-10015, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31244137

RESUMEN

Organic heterojunctions are widely used in organic electronics and they are composed of semiconductors interfaced together. Good ordering in the molecular packing inside the heterojunctions is highly desired but it is still challenging to interface organic single crystals to form single-crystalline heterojunctions. Here, we describe how organic heterojunctions are formed by interfacing two single crystals from a droplet of a mixed solution containing two semiconductors. Based on crystallization of six organic semiconductors from a droplet on a substrate, two distinct crystallization mechanisms have been recognized in the sense that crystals form at either the top interface between the air and solution or the bottom interface between the substrate and solution. The preference for one interface rather than the other depends on the semiconductor-substrate pair and, for a given semiconductor, it can be switched by changing the substrate, suggesting that the preference is associated with the semiconductor-substrate molecular interaction. Furthermore, simultaneous crystallization of two semiconductors at two different interfaces to reduce their mutual disturbance results in the formation of bilayer single crystals interfaced together for organic heterojunctions. These single-crystalline heterojunctions exhibit ambipolar charge transport in field-effect transistors, with the highest electron mobility of 1.90 cm2 V-1 s-1 and the highest hole mobility of 1.02 cm2 V-1 s-1. Hence, by elucidating the interfacial crystallization events, this work should greatly harvest the solution-grown organic single-crystalline heterojunctions.

4.
Angew Chem Int Ed Engl ; 57(8): 2209-2213, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29327805

RESUMEN

Fused benzene rings to antiaromatic compounds generally improve their stability but attenuate their antiaromaticity. The opposite case is now reported. NiII benzonorcorroles were synthesized and the effect of benzo-fusion on the antiaromaticity was elucidated. The benzo-fusion resulted in significant decrease of the HOMO-LUMO gaps and enhancement of the paratropic ring current effect. Furthermore, the introduction of the benzo groups induced singlet diradical character in the antiaromatic porphyrinoid.

5.
ACS Appl Mater Interfaces ; 9(9): 8211-8218, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28186397

RESUMEN

Tetrabenzoporphyrin (BP) is a p-type organic semiconductor characterized by the large, rigid π-framework, excellent stability, and good photoabsorption capability. These characteristics make BP and its derivatives prominent active-layer components in organic electronic and optoelectronic devices. However, the control of the solid-state arrangement of BP frameworks, especially in solution-processed thin films, has not been intensively explored, and charge-carrier mobilities observed in BP-based materials have stayed relatively low as compared to those in the best organic molecular semiconductors. This work concentrates on engineering the solid-state packing of a BP derivative, 5,15-bis(triisopropylsilyl)ethynyltetrabenzoporphyrin (TIPS-BP), toward achieving efficient charge-carrier transport in its solution-processed thin films. The effort leads to the selective formation of a brickwork packing that has two dimensionally extended π-staking. The maximum field-effect hole mobility in the resulting films reaches 1.1 cm2 V-1 s-1, which is approximately 14 times higher than the record value for pristine free-base BP (0.070 cm2 V-1 s-1). This achievement is enabled mainly through the optimization of three factors; namely, deposition process, cast solvent, and self-assembled monolayer that constitutes the dielectric surface. On the other hand, polarized-light microscopy and grazing-incident wide-angle X-ray diffraction analyses show that there remains some room for improvement in the in-plane homogeneity of molecular alignment, suggesting even higher charge-carrier mobilities can be obtained upon further optimization. These results will provide a useful basis for the polymorph engineering and morphology optimization in solution-processed organic molecular semiconductors.

6.
Org Biomol Chem ; 12(8): 1309-17, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24435219

RESUMEN

Bicyclo[2.2.2]octadiene-fused (BCOD-fused) bis(benzoborondipyrromethene)s (bisbenzoBODIPYs) bearing electron-withdrawing groups such as fluorine and cyano groups were prepared either by incorporating tetrafluoroisoindole moieties into BODIPY chromophores or by introducing cyano or ethoxycarbonyl groups at the 3,5-positions. The BCOD-fused bisbenzoBODIPYs were quantitatively converted to the corresponding benzene-fused bisbenzoBODIPYs by a retro-Diels-Alder reaction. The π-fused bisbenzoBODIPYs were found to have intense absorption in the near-infrared region and not to have any strong absorption bands in the visible region. Moreover, the bisbenzoBODIPYs were stable under atmospheric conditions.

7.
Org Biomol Chem ; 10(34): 6840-9, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22790329

RESUMEN

Benzene-fused bis-(borondipyrromethene)s (bis-BODIPYs) were synthesized by retro-Diels-Alder reaction of the corresponding bicyclo[2.2.2]octadiene-fused (BCOD-fused) bis-BODIPYs, which were, in turn, prepared from 4,8-ethano-4,8-dihydropyrrolo[3,4-f]isoindole derivatives. The π-fused bis-BODIPY chromophores were designed to show intensive absorption and strong fluorescence in the near-infrared region and not to have any strong absorption in the visible region. A 6,10-dibora-5a,6a,9a,10a-tetraaza-s-indaceno[2,3-b:6,5-b']difluorene derivative (syn-bis-benzoBODIPY) obtained by a thermal retro-Diels-Alder reaction of the corresponding BCOD-fused BODIPY dimer has strong absorption and emission bands at 775 and 781 nm, respectively. The absolute quantum yield is 0.36. The absorption is more than 5.0 times stronger than other absorptions observed in the visible region. In the case of 6,15-dibora-5a,6a,14a,15a-tetraaza-s-indaceno[2,3-b:6,7-b']difluorene derivatives (anti-bis-benzoBODIPY), the absorption and emission maxima exceed 840 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...