Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766109

RESUMEN

Objective: Anterior Cruciate Ligament (ACL) injury develops the Osteoarthritis (OA) via two distinct processes: initial direct micro-injury of the cartilage surface by compressive force during ACL injury, and secondary joint instability due to the deficiency of the ACL. Using the conventional Compression-induced ACL-R and novel Non-Compression ACL-R models, we aimed to reveal the individual effects on OA progression after ACL injury. Methods: Twelve-week-old C57BL/6 male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. We performed the joint laxity test and microscope analysis at 0 days, in vivo imaging with matrix-metalloproteinases (MMPs) at 3 and 7 days, histological and micro-CT analysis at 0, 7, 14, and 28 days. Results: Although no differences in the joint laxity were observed between both ACL-R groups, the Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, Compression group increased MMPs-induced fluorescence intensity slightly and MMP-13 positive cell ratio of chondrocytes significantly than that in the Non-Compression group. Moreover, histological cartilage degeneration initiated in the whole joint level of the Compression group at the same time point. Micro-CT analysis revealed that sclerosis of tibial Subchondral bone in the Compression group developed significantly more than in the Non-Compression group at 28 days, especially in the medial tibial compartment. Conclusions: Concurrent joint contact during ACL rupture caused initial micro-damage on the cartilage surface and early cartilage degeneration with MMP-13 production, leading to later bone formation in the subchondral bone.

2.
J Orthop Res ; 41(3): 511-523, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35716158

RESUMEN

Entheses, which are tendon-to-bone attachment sites in the musculoskeletal system, play important roles in optimizing the mechanical stress and force transmitted from the muscle to the bone. Sports-related enthesopathy shows pathological features, including hyperplasia of the fibrocartilage (FC) region in the enthesis. The amount of exercise and type of muscle contraction during movement is involved in the pathogenesis of sports-related enthesopathy; however, the details of this condition are unclear. Here we examined the molecular pathways involved in the morphological changes of the muscle-tendon-enthesis complex and enthesis FC region in the supraspinatus muscle enthesis of mice under different exercise conditions. Following intervention, morphological changes in the muscle-tendon-enthesis complex were initiated in the eccentric contraction-dominant exercise group at 2 weeks, with activation of the transforming growth factor-ß (TGFß) superfamily pathway predicted by proteome and ingenuity pathway analyses. Histological and molecular biological analyses confirmed the activation of the TGFß/bone morphogenetic protein (BMP)-Smad pathway. The concentric contraction-dominant exercise group showed no change in the morphology of the muscle-tendon-enthesis complex or activation of the TGFß/BMP-Smad pathway, despite overuse exercise. Statement of Clinical Significance: These results suggest that eccentric contraction-dominant exercise induces sports-related enthesopathy-like morphological changes in the early stages as well as molecular biological changes, mainly in the transforming growth factor-ß superfamily pathway in enthesis. Statement of Clinical Significance: These results suggest that eccentric contraction-dominant exercise induces sports-related enthesopathy-like morphological changes in the early stages as well as molecular biological changes, mainly in the transforming growth factor-ß superfamily pathway in enthesis.


Asunto(s)
Entesopatía , Condicionamiento Físico Animal , Proteínas de la Superfamilia TGF-beta , Animales , Ratones , Huesos/patología , Tendones/patología , Proteínas de la Superfamilia TGF-beta/metabolismo
3.
Cartilage ; 13(1): 19476035211069239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073770

RESUMEN

OBJECTIVE: Joint instability and meniscal dysfunction contribute to the onset and progression of knee osteoarthritis (OA). In the destabilization of the medial meniscus (DMM) model, secondary OA occurs due to the rotational instability and increases compressive stress resulting from the meniscal dysfunction. We created a new controlled abnormal tibial rotation (CATR) model that reduces the rotational instability that occurs in the DMM model. So, we aimed to investigate whether rotational instability affects articular cartilage degeneration using the DMM and CATR models, as confirmed using histology and immunohistochemistry. DESIGN: Twelve-week-old male mice were randomized into 3 groups: DMM group, CATR group, and INTACT group (right knee of the DMM group). After 8 and 12 weeks, we performed the tibial rotational test, safranin-O/fast green staining, and immunohistochemical staining for tumor necrosis factor (TNF)-α and metalloproteinase (MMP)-13. RESULTS: The rotational instability in the DMM group was significantly higher than that of the other groups. And articular cartilage degeneration was higher in the DMM group than in the other groups. However, meniscal degeneration was observed in both DMM and CATR groups. The TNF-α and MMP-13 positive cell rates in the articular cartilage of the CATR group were lower than those in the DMM group. CONCLUSIONS: We found that the articular cartilage degeneration was delayed by controlling the rotational instability caused by meniscal dysfunction. These findings suggest that suppression of rotational instability in the knee joint may be an effective therapeutic measure for preventing OA progression.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Inestabilidad de la Articulación , Menisco , Osteoartritis de la Rodilla , Animales , Enfermedades de los Cartílagos/patología , Cartílago Articular/patología , Modelos Animales de Enfermedad , Masculino , Meniscos Tibiales , Ratones , Osteoartritis de la Rodilla/patología
4.
J Orthop Res ; 40(9): 2076-2088, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34862672

RESUMEN

Mechanical stress is involved in the onset of sports-related enthesopathy. Although the amount of exercise undertaken is a recognized problem during disease onset, changes in muscle contraction type are also involved in the increase in mechanical stress during exercise. This study aimed to clarify the effects of increased mechanical stress associated with muscle contraction type and amount of exercise on enthesis. Twenty mice underwent treadmill exercise, and the muscle contraction type and overall load during exercise were adjusted by varying the angle and speed conditions. Histological analysis was used to the cross-sectional area of the muscle; area of the enthesis fibrocartilage (FC), and expression of inflammation-, degeneration-, and calcification-related factors in the FC area. In addition, the volume and structure of the bone and FC area were examined using microcomputer imaging. Molecular biological analysis was conducted to compare relative expression levels of inflammation and cytokine-related factors in tendons. The Overuse group, which increased the amount of exercise, showed no significant differences in parameters compared to the sedentary mice (Control group). The mice subjected to slow-speed downhill running (Misuse group) showed pathological changes compared to the Control and Overuse groups, despite the small amount of exercise. Thus, the enthesis FC area may be altered by local mechanical stress that would be increased by eccentric muscle contraction rather than by mechanical stress that increases with the overall amount of exercise. Clinical Significance: The muscle contraction type might be more involved in the onset of sports-related enthesopathy rather than the amount of exercise.


Asunto(s)
Entesopatía , Carrera , Animales , Inflamación/metabolismo , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Carrera/fisiología , Tendones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...