Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 35(2): 153-158, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30249930

RESUMEN

To evaluate the mobility and bioavailability of 137Cs in soils, we compared the extraction of 137Cs with stable Cs and ammonium solutions from 137Cs-contaminated minerals and soils. The extraction yields of 137Cs with stable Cs were significantly lower than those with ammonium for minerals with frayed edge sites, but such differences were not observed for minerals without frayed edge sites. The amount of 137Cs extracted with stable Cs from soils was lower than, or equal to, that extracted with ammonium. The above results suggest that stable Cs extracted the 137Cs from easily accessible sites. Plant available 137Cs was assessed using Kochia (Bassia scoparia) cultivated in pots of contaminated soils, and compared with soil parameters including extractable 137Cs and K, and radiocesium intercept potential. The 137Cs/K ratio extracted with stable Cs solution was found to be a potential index for evaluation of the easily mobile and bioavailable fraction of 137Cs in soil.


Asunto(s)
Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/aislamiento & purificación , Cesio/química , Fraccionamiento Químico/métodos , Cloruros/química , Nitratos/química , Suelo/química , Indicadores y Reactivos/química , Minerales/química
2.
Sci Total Environ ; 636: 539-546, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29715658

RESUMEN

High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L-1, those in 31 catchments consistently exceeded 1 mgN L-1, indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere.

3.
Arch Environ Contam Toxicol ; 74(1): 154-169, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28791460

RESUMEN

Despite the wide use of trace metals in various technologies, such as chemical industries and electronic equipment, insufficient information is available on their behavior in the environment. We investigated changes in chemical forms and vertical distribution during the migration processes of trace metals, whose usage is currently increasing rapidly, such as Ag, In, Sn, Sb, and Bi, in soil contaminated with the equivalent of 50-100 times the background concentrations of these metals using an indoor control type monolith lysimeter filled with Andosol during an 8-year monitoring period. The vertical distribution of the total elemental concentrations, the mobile fractions (exchangeable, carbonate-bound, and metal-organic complex-bound) in soils, and the total elemental concentrations in soil solutions were analyzed to study trace metal migration in soil. Except for In, most of the added metals were retained in the uppermost (0-2 cm) soil layer, even after 8 years. However, In markedly migrated downward and accumulated at a depth of approximately 15 cm after 8 years. Furthermore, 10.0 ± 2.9 µg L-1 of In was detected in soil solution at a depth of 17.5 cm. The mobility of In was probably caused by the acidity of the soil, because the pH of the soil between 0 and 15-cm depth was 5 and below, and soluble hydro-oxides, such as In(OH) 30 aq and In(OH) 2+ , might be produced at this pH. Consequently, the remarkable mobility of In occurred in Andosol, which strongly retains various trace metals. The proportions of the mobile fractions observed in this study indicated that the mobility of the five metals in Andosol occurred in the order In > Bi ≥ Sb ≥ Sn > Ag.


Asunto(s)
Metales/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Metales/química , Suelo/química , Contaminantes del Suelo/química
4.
Sci Rep ; 7(1): 7701, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794453

RESUMEN

Ecosystems of suburban landscapes (i.e., forest, inland water ecosystem) are threatened by high nitrogen (N) loadings derived from urban air pollutants. Forest ecosystems under high chronic N loadings tend to leach more N via streams. In the northern suburbs of Tokyo, N deposition loading on terrestrial ecosystems has increased over the past 30 years. In this region, we investigated nitrate concentrations in 608 independent small forested catchment water samples from northeastern suburbs of Tokyo. The nitrate concentrations varied from 0.07 to 3.31 mg-N L-1 in this region. We evaluated the effects of N deposition and catchment properties (e.g., meteorological and topographic factors, vegetation and soil types) on nitrate concentrations. In the random forest model, simulated N deposition rates from an atmospheric chemistry transportation model explained most of the variance of nitrate concentration. To evaluate the effects of afforestation management in the catchment, we followed a model-based recursive partitioning method (MOB). MOB succeeded in data-driven identification of subgroups with varying sensitivities to N deposition rate by vegetation composition in the catchment. According to MOB, the catchment with dominant coniferous coverage that mostly consisted of plantation with old tree age tended to have strong sensitivity of nitrate concentrations to N deposition loading.

5.
Springerplus ; 5(1): 1596, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27652169

RESUMEN

To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

6.
Sci Total Environ ; 502: 611-6, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25302448

RESUMEN

Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted (137)Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of (137)Cs in C. japonica leaves, we analyzed activity concentrations of (137)Cs and the concentration ratios of (137)Cs to (133)Cs ((137)Cs/(133)Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20-40% of foliar (137)Cs existed inside the leaf, while 60-80% adhered to the leaf surface. The (137)Cs/(133)Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of (137)Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the (137)Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar (137)Cs/(133)Cs ratios to that of the old leaves, suggesting that internal (137)Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained (137)Cs, and their (137)Cs/(133)Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of (137)Cs is an important vector of contamination in various tree species during or just after radioactive fallout.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Hojas de la Planta/química , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Cedrus/química , Japón , Ceniza Radiactiva
7.
Sci Total Environ ; 408(8): 1932-42, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20153018

RESUMEN

Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)(i)/(X/Al)(BG) (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93)>or=Sb (4.06)>or=As (3.04)>Zn (1.71)>or=Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0)>Pb (12.4)>Cu (4.48)>or=As (3.43)>or=Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO(3)(-), which is a typical acidic air pollutant. There was a strong correlation between Sb and NO(3)(-) concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO(3)(-)]=21.1 [dissolved Sb], r=0.938, p<0.0001, n=182). Using this correlation, total (cumulative) inputs of NO(3)(-) were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7t/ha at Mt. Kinsyo (most polluted), 8.6t/ha at Mt. Tsukuba (moderately polluted), and 5.8t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.


Asunto(s)
Contaminantes Atmosféricos/análisis , Arsénico/análisis , Cryptomeria , Ecosistema , Metales Pesados/análisis , Nitratos/análisis , Contaminantes del Suelo/análisis , Contaminantes Atmosféricos/química , Altitud , Ciudades , Cryptomeria/crecimiento & desarrollo , Cryptomeria/metabolismo , Monitoreo del Ambiente , Geografía , Concentración de Iones de Hidrógeno , Japón , Lluvia/química , Medición de Riesgo , Contaminantes del Suelo/química
8.
Arch Environ Contam Toxicol ; 59(1): 91-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20039167

RESUMEN

The present study was performed to investigate the weathering and dissolution rates of Pb shot pellets differing in elemental composition (Pb, Sb, and As) exposed under various aqueous and soil conditions using five commercial shot pellet preparations. Upon immersion in distilled water, the dissolution rates of shot pellets, calculated from the difference in weight before versus after immersion, decreased with increasing Sb + As contents and the dominant precipitate was hydrocerussite. These subsidiary ingredients may be related to the difficulty of metallic Pb oxidation (transformation to PbO). Weight losses standardized by the amount of rainfall upon exposure to rainfall on open grassland and under canopies of Japanese cedar (Cryptomeria japonica) and bamboo-leafed oak (Quercus myrsinaefolia) were 1.11, 1.07, and 7.35 mg g pellets(-1) year(-1) L(-1), respectively, and was also related to Sb + As contents in shot pellets. However, annual dissolution rates of Pb standardized by the amount of rainfall as the soluble fraction at the same sites were 0.72, 0.33, and 0.40 mg Pb g pellets(-1) year(-1) L(-1) in the same order. These trends seemed to be related to the rainfall pH, which induces precipitation of Pb dissolved as PbCO(3) under conditions of higher pH at the Q. myrsinaefolia site or organic matter released from leaves, etc., which can form metal complexes. Dissolution rates of shot pellets buried in soils (Cambisol, Fluvisol, Regosol, Andosol) also seemed to be related to the soil pH and dissolved organic matter contents but were about sixfold faster than those with exposure to rainfall.


Asunto(s)
Plomo/química , Contaminantes del Suelo/química , Suelo/análisis , Antimonio/análisis , Antimonio/química , Antimonio/metabolismo , Arsénico/análisis , Arsénico/química , Arsénico/metabolismo , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Plomo/análisis , Plomo/metabolismo , Poaceae/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Árboles/metabolismo , Tiempo (Meteorología)
9.
New Phytol ; 174(3): 516-523, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17447908

RESUMEN

Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that are nonessential for plant growth. Here the leaf composition of 42 elements is reported from a statistically unstructured data set comprising over 2000 leaf samples, representing 670 species and 138 families of terrestrial plants. Over 25% of the total variation in leaf element composition could be assigned to the family level and above for 21 of these elements. The remaining variation corresponded to differences between species within families, to differences between sites which were likely to be caused by soil and climatic factors, and to variation caused by sampling techniques. While the majority of variation in leaf mineral composition is undoubtedly associated with nonevolutionary factors, identifying higher-level phylogenetic variation in leaf elemental composition increases our understanding of terrestrial nutrient cycles and the transfer of toxic elements from soils to living organisms. Identifying mechanisms by which different plant families control their leaf elemental concentration remains a challenge.


Asunto(s)
Elementos Químicos , Hojas de la Planta/química , Plantas/química , Evolución Biológica , Minerales/análisis , Filogenia , Plantas/clasificación , Suelo
10.
J Environ Monit ; 8(1): 167-73, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16395475

RESUMEN

We developed a method to analyze atmospheric SO(x) (particulate SO(4)(2-)+ gaseous SO(2)) and NO(x) (NO + NO(2)) simultaneously using a battery-operated portable filter pack sampler. NO(x) determination using a filter pack method is new. SO(x) and NO(x) were collected on a Na(2)CO(3) filter and PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) + TEA (triethanolamine) filters (6 piled sheets), respectively. Aqueous solutions were then used to extract pollutants trapped by the filters and the resulting extracts were pre-cleaned (e.g. elimination of PTIO) and analyzed for sulfate and nitrite by ion chromatography. Recoveries of SO(2) and NO(x) from standard pollutant gases and consistency of the field data with those from other instrumental methods were examined to evaluate our method. SO(x) and NO(x) could be analyzed accurately with determination limits of 0.2 ppbv and 1.0 ppbv (as daily average concentrations), respectively. The sampler can determine SO(x) and NO(x) concentrations at mountainous or remote sites without needing an electric power supply.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Óxidos de Nitrógeno/análisis , Óxidos de Azufre/análisis , Carbonatos , Celulosa , Óxidos N-Cíclicos , Monitoreo del Ambiente/métodos , Etanolaminas , Filtración , Humedad , Imidazoles , Cuarzo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...