Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Adv Radiat Oncol ; 9(5): 101464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560429

RESUMEN

Purpose: In real-time image-gated spot-scanning proton therapy (RGPT), the dose distribution is distorted by gold fiducial markers placed in the prostate. Distortion can be suppressed by using small markers and more than 2 fields, but additional fields may increase the dose to organs at risk. Therefore, we conducted a prospective study to evaluate the safety and short-term clinical outcome of RGPT for prostate cancer. Methods and Materials: Based on the previously reported frequency of early adverse events (AE) and the noninferiority margin of 10%, the required number of cases was calculated to be 43 using the one-sample binomial test by the Southwest Oncology Group statistical tools with the one-sided significance level of 2.5% and the power 80%. Patients with localized prostate cancer were enrolled and 3 to 4 pure gold fiducial markers of 1.5-mm diameter were inserted in the prostate. The prescribed dose was 70 Gy(relative biologic effectiveness) in 30 fractions, and treatment was performed with 3 fields from the left, right, and the back, or 4 fields from either side of slightly anterior and posterior oblique fields. The primary endpoint was the frequency of early AE (≥grade 2) and the secondary endpoint was the biochemical relapse-free survival rate and the frequency of late AE. Results: Forty-five cases were enrolled between 2015 and 2017, and all patients completed the treatment protocol. The median follow-up period was 63.0 months. The frequency of early AE (≥grade 2) was observed in 4 cases (8.9%), therefore the noninferiority was verified. The overall 5-year biochemical relapse-free survival rate was 88.9%. As late AE, grade 2 rectal bleeding was observed in 8 cases (17.8%). Conclusions: The RGPT for prostate cancer with 1.5-mm markers and 3- or 4- fields was as safe as conventional proton therapy in early AE, and its efficacy was comparable with previous studies.

2.
Med Phys ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127935

RESUMEN

BACKGROUND: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin. PURPOSE: A prototype of the probe head attached to an OH was fabricated and the required dimensions were experimentally investigated using a 100-MeV proton beam from a fixed-field alternating gradient accelerator and k-Wave simulations. The beam range of the proton in a tissue-mimicking phantom was estimated by measuring γ-waves and spherical ionoacoustic waves with resonant frequency (SPIRE). METHODS: Four sizes of probe heads were fabricated from agar blocks for the OH. Using the prototype, the Î³-wave was detected at distal and lateral positions to the Bragg peak on the phantom surface for proton beams delivered at seven positions. For SPIRE, independent measurements were performed at distal on- and off-axis positions. The range positions were estimated by solving the linear equation using the sensitive matrix for the γ-wave and linear fitting of the correlation curve for SPIRE; they were compared with those measured using a film. RESULTS: The first peak of the γ-wave was undistorted with the 3 × 3 × 3-cm3 probe head used at the on-axis and 3-cm off-axis positions. The range positions estimated by the γ-wave agreed with the film-based range in the depth direction (the maximum deviation was 0.7 mm), although a 0.6-2.1 mm deviation was observed in the lateral direction. For SPIRE, the deviation was <1 mm for the two measurement positions. CONCLUSIONS: The attachment of a relatively small-sized probe head allowed the OH to measure the beam range on the phantom surface.

3.
Br J Radiol ; 96(1144): 20220720, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633335

RESUMEN

OBJECTIVES: In a previous study of hepatic toxicity, the following three factors were identified to predict the benefits of proton beam therapy (PBT) for hepatocellular carcinomas (HCCs) with a maximum diameter of ≤5 cm and Child-pugh grade A (CP-A): number of tumors (1 vs ≥2), the location of tumors (hepatic hilum or others), and the sum of the diameters of lesions. The aim of this study is to analyze the association between these three factors and hepatic toxicity. METHODS: We retrospectively reviewed patients of CP-A treated with PBT or photon stereotactic body radiotherapy (X-ray radiotherapy, XRT) for HCC ≤5 cm. For normal liver dose, the V5, V10, V20 (volumes receiving 5, 10, and 20 Gy at least), and the mean dose was evaluated. The albumin-bilirubin (ALBI) and CP score changes from the baseline were evaluated at 3 and 6 months after treatment. RESULTS: In 89 patients (XRT: 48, PBT: 41), those with two or three (2-3) predictive factors were higher normal liver doses than with zero or one (0-1) factor. In the PBT group, the ALBI score worsened more in patients with 2-3 factors than those with 0-1 factor, at 3 months (median: 0.26 vs 0.02, p = 0.032) and at 6 months (median: 0.35 vs 0.10, p = 0.009). The ALBI score change in the XRT group and CP score change in either modality were not significantly different in the number of predictive factors. CONCLUSION: The predictive factor numbers predicted the ALBI score change in PBT but not in XRT. ADVANCES IN KNOWLEDGE: This study suggest that the number of predictive factors previously identified (0-1 vs 2-3) were significantly associated with dosimetric parameters of the normal liver in both modalities. In the proton group, the number of predictive factors was associated with a worsening ALBI score at 3 and 6 months, but these associations were not found in the photon SBRT group.


Asunto(s)
Carcinoma Hepatocelular , Enfermedades del Sistema Digestivo , Hepatitis , Neoplasias Hepáticas , Terapia de Protones , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patología , Terapia de Protones/efectos adversos , Protones , Estudios Retrospectivos , Bilirrubina
4.
Med Phys ; 50(2): 993-999, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427355

RESUMEN

PURPOSE: To quantitatively evaluate the achievable performance of volumetric imaging based on lung motion modeling by principal component analysis (PCA). METHODS: In volumetric imaging based on PCA, internal deformation was represented as a linear combination of the eigenvectors derived by PCA of the deformation vector fields evaluated from patient-specific four-dimensional-computed tomography (4DCT) datasets. The volumetric image was synthesized by warping the reference CT image with a deformation vector field which was evaluated using optimal principal component coefficients (PCs). Larger PCs were hypothesized to reproduce deformations larger than those included in the original 4DCT dataset. To evaluate the reproducibility of PCA-reconstructed volumetric images synthesized to be close to the ground truth as possible, mean absolute error (MAE), structure similarity index measure (SSIM) and discrepancy of diaphragm position were evaluated using 22 4DCT datasets of nine patients. RESULTS: Mean MAE and SSIM values for the PCA-reconstructed volumetric images were approximately 80 HU and 0.88, respectively, regardless of the respiratory phase. In most test cases including the data of which motion range was exceeding that of the modeling data, the positional error of diaphragm was less than 5 mm. The results suggested that large deformations not included in the modeling 4DCT dataset could be reproduced. Furthermore, since the first PC correlated with the displacement of the diaphragm position, the first eigenvector became the dominant factor representing the respiration-associated deformations. However, other PCs did not necessarily change with the same trend as the first PC, and no correlation was observed between the coefficients. Hence, randomly allocating or sampling these PCs in expanded ranges may be applicable to reasonably generate an augmented dataset with various deformations. CONCLUSIONS: Reasonable accuracy of image synthesis comparable to those in the previous research were shown by using clinical data. These results indicate the potential of PCA-based volumetric imaging for clinical applications.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Análisis de Componente Principal , Reproducibilidad de los Resultados , Movimiento (Física) , Diagnóstico por Imagen , Respiración , Tomografía Computarizada Cuatridimensional/métodos
5.
Med Phys ; 50(2): 675-687, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502527

RESUMEN

BACKGROUND: Online adaptation during intensity-modulated proton therapy (IMPT) can minimize the effect of inter-fractional anatomical changes, but remains challenging because of the complex workflow. One approach for fast and automated online IMPT adaptation is dose restoration, which restores the initial dose distribution on the updated anatomy. However, this method may fail in cases where tumor deformation or position changes occur. PURPOSE: To develop a fast and robust IMPT online adaptation method named "deformed dose restoration (DDR)" that can adjust for inter-fractional tumor deformation and position changes. METHODS: The DDR method comprises two steps: (1) calculation of the deformed dose distribution, and (2) restoration of the deformed dose distribution. First, the deformable image registration (DIR) between the initial clinical target volume (CTV) and the new CTV were performed to calculate the vector field. To ensure robustness for setup and range uncertainty and the ability to restore the deformed dose distribution, an expanded CTV-based registration to maintain the dose gradient outside the CTV was developed. The deformed dose distribution was obtained by applying the vector field to the initial dose distribution. Then, the voxel-by-voxel dose difference optimization was performed to calculate beam parameters that restore the deformed dose distribution on the updated anatomy. The optimization function was the sum of total dose differences and dose differences of each field to restore the initial dose overlap of each field. This method only requires target contouring, which eliminates the need for organs at risk (OARs) contouring. Six clinical cases wherein the tumor deformation and/or position changed on repeated CTs were selected. DDR feasibility was evaluated by comparing the results with those from three other strategies, namely, not adapted (continuing the initial plan), adapted by previous dose restoration, and fully optimized. RESULTS: In all cases, continuing the initial plan was largely distorted on the repeated CTs and the dose-volume histogram (DVH) metrics for the target were reduced due to the tumor deformation or position changes. On the other hand, DDR improved DVH metrics for the target to the same level as the initial dose distribution. Dose increase was seen for some OARs because tumor growth had reduced the relative distance between CTVs and OARs. Robustness evaluation for setup and range uncertainty (3 mm/3.5%) showed that deviation in DVH-bandwidth for CTV D95% from the initial plan was 0.4% ± 0.5% (Mean ± S.D.) for DDR. The calculation time was 8.1 ± 6.4 min. CONCLUSIONS: An online adaptation algorithm was developed that improved the treatment quality for inter-fractional anatomical changes and retained robustness for intra-fractional setup and range uncertainty. The main advantage of this method is that it only requires target contouring alone and saves the time for OARs contouring. The fast and robust adaptation method for tumor deformation and position changes described here can reduce the need for offline adaptation and improve treatment efficiency.


Asunto(s)
Neoplasias , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo
6.
Med Phys ; 49(12): 7815-7825, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36300598

RESUMEN

BACKGROUND: The relative biological effectiveness (RBE) of proton is considered to be dependent on biological parameters and fractional dose. While hyperfractionated photon therapy was effective in the treatment of patients with head and neck cancers, its effect in intensity-modulated proton therapy (IMPT) under the variable RBE has not been investigated in detail. PURPOSE: To study the effect of variable RBE on hyperfractionated IMPT for the treatment of pharyngeal cancer. We investigated the biologically effective dose (BED) to determine the theoretical effective hyperfractionated schedule. METHODS: The treatment plans of three pharyngeal cancer patients were used to define the ΔBED for the clinical target volume (CTV) and soft tissue (acute and late reaction) as the difference between the BED for the altered schedule with variable RBE and conventional schedule with constant RBE. The ΔBED with several combinations of parameters (treatment days, number of fractions, and prescribed dose) was comprehensively calculated. Of the candidate schedules, the one that commonly gave a higher ΔBED for CTV was selected as the resultant schedule. The BED volume histogram was used to compare the influence of variable RBE and fractionation. RESULTS: In the conventional schedule, compared with the constant RBE, the variable RBE resulted in a mean 2.6 and 2.7 Gy reduction of BEDmean for the CTV and soft tissue (acute reaction) of the three plans, respectively. Moreover, the BEDmean for soft tissue (late reaction) increased by 7.4 Gy, indicating a potential risk of increased RBE. Comprehensive calculation of the ΔBED resulted in the hyperfractionated schedule of 80.52 Gy (RBE = 1.1)/66 fractions in 6.5 weeks. When variable RBE was used, compared with the conventional schedule, the hyperfractionated schedule increased the BEDmean for CTV by 7.6 Gy; however, this was associated with a 7.8 Gy increase for soft tissue (acute reaction). The BEDmean for soft tissue (late reaction) decreased by 2.4 Gy. CONCLUSION: The results indicated a potential effect of the variable RBE on IMPT for pharyngeal cancer but with the possibility that hyperfractionation could outweigh this effect. Although biological uncertainties require conservative use of the resultant schedule, hyperfractionation is expected to be an effective strategy in IMPT for pharyngeal cancer.


Asunto(s)
Neoplasias Faríngeas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Terapia de Protones/métodos , Órganos en Riesgo , Fraccionamiento de la Dosis de Radiación , Protones , Neoplasias Faríngeas/radioterapia , Neoplasias Faríngeas/etiología , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Efectividad Biológica Relativa , Dosificación Radioterapéutica
7.
Clin Transl Radiat Oncol ; 35: 70-75, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35633653

RESUMEN

Background: For small primary liver tumors, favorable outcomes have been reported with both of proton beam therapy (PBT) and X-ray therapy (XRT). However, no clear criteria have been proposed in the cases for which and when of PBT or XRT has to be used. The aim of this study is to investigate cases that would benefit from PBT based on the predicted rate of hepatic toxicity. Materials and methods: Eligible patients were those who underwent PBT for primary liver tumors with a maximum diameter of ≤ 5 cm and Child-Pugh grade A (n = 40). To compare the PBT-plan, the treatment plan using volumetric modulated arc therapy was generated as the XRT-plan. The rate of predicted hepatic toxicity was estimated using five normal tissue complication probability (NTCP) models with three different endpoints. The differences in NTCP values (ΔNTCP) were calculated to determine the relative advantage of PBT. Factors predicting benefits of PBT were analyzed by logistic regression analysis. Results: From the dose-volume histogram comparisons, an advantage of PBT was found in sparing of the normal liver receiving low doses. The factors predicting the benefit of PBT differed depending on the selected NTCP model. From the five models, the total tumor diameter (sum of the target tumors), location (hepatic hilum vs other), and number of tumors (1 vs 2) were significant factors. Conclusions: From the radiation-related hepatic toxicity, factors were identified to predict benefits of PBT in primary liver tumors with Child-Pugh grade A, with the maximum tumor diameter of ≤ 5 cm.

8.
Med Phys ; 49(1): 702-713, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796522

RESUMEN

PURPOSE: In the scanning beam delivery of protons, different portions of the target are irradiated with different linear energy transfer protons with various time intervals and irradiation times. This research aimed to evaluate the spatially dependent biological effectiveness of protracted irradiation in scanning proton therapy. METHODS: One and two parallel opposed fields plans were created in water phantom with the prescribed dose of 2 Gy. Three scenarios (instantaneous, continuous, and layered scans) were used with the corresponding beam delivery models. The biological dose (physical dose × relative biological effectiveness) was calculated using the linear quadratic model and the theory of dual radiation action to quantitatively evaluate the dose delivery time effect. In addition, simulations using clinical plans (postoperative seminoma and prostate tumor cases) were conducted to assess the impact of the effects on the dose volume histogram parameters and homogeneity coefficient (HC) in targets. RESULTS: In a single-field plan of water phantom, when the treatment time was 19 min, the layered-scan scenario showed a decrease of <0.2% (almost 3.3%) in the biological dose from the plan on the distal (proximal) side because of the high (low) dose rate. This is in contrast to the continuous scenario, where the biological dose was almost uniformly decreased over the target by approximately 3.3%. The simulation with clinical geometry showed that the decrease rates in D99% were 0.9% and 1.5% for every 10 min of treatment time prolongation for postoperative seminoma and prostate tumor cases, respectively, whereas the increase rates in HC were 0.7% and 0.2%. CONCLUSIONS: In protracted irradiation in scanning proton therapy, the spatially dependent dose delivery time structure in scanning beam delivery can be an important factor for accurate evaluation of biological effectiveness.


Asunto(s)
Terapia de Protones , Humanos , Transferencia Lineal de Energía , Masculino , Fantasmas de Imagen , Protones , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa
9.
J Radiat Res ; 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617104

RESUMEN

The prediction of liver Dmean with 3-dimensional radiation treatment planning (3DRTP) is time consuming in the selection of proton beam therapy (PBT), and deep learning prediction generally requires large and tumor-specific databases. We developed a simple dose prediction tool (SDP) using deep learning and a novel contour-based data augmentation (CDA) approach and assessed its usability. We trained the SDP to predict the liver Dmean immediately. Five and two computed tomography (CT) data sets of actual patients with liver cancer were used for the training and validation. Data augmentation was performed by artificially embedding 199 contours of virtual clinical target volume (CTV) into CT images for each patient. The data sets of the CTVs and OARs are labeled with liver Dmean for six different treatment plans using two-dimensional calculations assuming all tissue densities as 1.0. The test of the validated model was performed using 10 unlabeled CT data sets of actual patients. Contouring only of the liver and CTV was required as input. The mean relative error (MRE), the mean percentage error (MPE) and regression coefficient between the planned and predicted Dmean was 0.1637, 6.6%, and 0.9455, respectively. The mean time required for the inference of liver Dmean of the six different treatment plans for a patient was 4.47±0.13 seconds. We conclude that the SDP is cost-effective and usable for gross estimation of liver Dmean in the clinic although the accuracy should be improved further if we need the accuracy of liver Dmean to be compatible with 3DRTP.

10.
Phys Imaging Radiat Oncol ; 20: 23-29, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34693040

RESUMEN

BACKGROUND AND PURPOSE: Urethra-sparing radiation therapy for localized prostate cancer can reduce the risk of radiation-induced genitourinary toxicity by intentionally underdosing the periurethral transitional zone. We aimed to compare the clinical impact of a urethra-sparing intensity-modulated proton therapy (US-IMPT) plan with that of conventional clinical plans without urethral dose reduction. MATERIALS AND METHODS: This study included 13 patients who had undergone proton beam therapy. The prescribed dose was 63 GyE in 21 fractions for 99% of the clinical target volume. To compare the clinical impact of the US-IMPT plan with that of the conventional clinical plan, tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with a generalized equivalent uniform dose-based Lyman-Kutcher model using dose volume histograms. The endpoints of these model parameters for the rectum, bladder, and urethra were fistula, contraction, and urethral stricture, respectively. RESULTS: The mean NTCP value for the urethra in US-IMPT was significantly lower than that in the conventional clinical plan (0.6% vs. 1.2%, p < 0.05). There were no statistically significant differences between the conventional and US-IMPT plans regarding the mean minimum dose for the urethra with a 3-mm margin, TCP value, and NTCP value for the rectum and bladder. Additionally, the target dose coverage of all plans in the robustness analysis was within the clinically acceptable range. CONCLUSIONS: Compared with the conventional clinically applied plans, US-IMPT plans have potential clinical advantages and may reduce the risk of genitourinary toxicities, while maintaining the same TCP and NTCP in the rectum and bladder.

11.
Phys Med Biol ; 66(18)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433146

RESUMEN

Increasing numbers of proton imaging research studies are being conducted for accurate proton range determination in proton therapy treatment planning. However, there is no proton imaging system that deals with motion artifacts. In this study, a gated proton imaging system was developed and the first experimental results of proton radiography (pRG) were obtained for a moving object without motion artifacts. A motion management system using dual x-ray fluoroscopy for detecting a spherical gold fiducial marker was introduced and the proton beam was gated in accordance with the motion of the object. To demonstrate the performance of the gated proton imaging system, gated pRG images of a moving phantom were acquired experimentally, and the motion artifacts clearly were diminished. Also, the factors causing image deteriorations were evaluated focusing on the new gating system developed here, and the main factor was identified as the latency (with a maximum value of 93 ms) between the ideal gating signal according to the actual marker position and the actual gating signal. The possible deterioration due to the latency of the proton imaging system and proton beam irradiation was small owing to appropriate setting of the time structure.


Asunto(s)
Marcadores Fiduciales , Terapia de Protones , Fluoroscopía , Fantasmas de Imagen , Protones , Rayos X
12.
J Radiat Res ; 62(5): 926-933, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34196697

RESUMEN

The purpose of this work is to show the usefulness of a prediction method of tumor location based on partial least squares regression (PLSR) using multiple fiducial markers. The trajectory data of respiratory motion of four internal fiducial markers inserted in lungs were used for the analysis. The position of one of the four markers was assumed to be the tumor position and was predicted by other three fiducial markers. Regression coefficients for prediction of the position of the tumor-assumed marker from the fiducial markers' positions is derived by PLSR. The tracking error and the gating error were evaluated assuming two possible variations. First, the variation of the position definition of the tumor and the markers on treatment planning computed tomograhy (CT) images. Second, the intra-fractional anatomical variation which leads the distance change between the tumor and markers during the course of treatment. For comparison, rigid predictions and ordinally multiple linear regression (MLR) predictions were also evaluated. The tracking and gating errors of PLSR prediction were smaller than those of other prediction methods. Ninety-fifth percentile of tracking/gating error in all trials were 3.7/4.1 mm, respectively in PLSR prediction for superior-inferior direction. The results suggested that PLSR prediction was robust to variations, and clinically applicable accuracy could be achievable for targeting tumors.


Asunto(s)
Sistemas de Computación , Marcadores Fiduciales , Tomografía Computarizada Cuatridimensional , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Análisis de los Mínimos Cuadrados , Neoplasias/diagnóstico por imagen , Radiografía Intervencional , Errores Diagnósticos , Fluoroscopía , Humanos , Modelos Lineales , Movimiento (Física) , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador , Respiración
13.
Med Phys ; 48(9): 5311-5326, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34260755

RESUMEN

PURPOSE: To show the feasibility of real-time CT image generation technique utilizing internal fiducial markers that facilitate the evaluation of internal deformation. METHODS: In the proposed method, a linear regression model that can derive internal deformation from the displacement of fiducial markers is built for each voxel in the training process before the treatment session. Marker displacement and internal deformation are derived from the four-dimensional computed tomography (4DCT) dataset. In the treatment session, the three-dimensional deformation vector field is derived according to the marker displacement, which is monitored by the real-time imaging system. The whole CT image can be synthesized by deforming the reference CT image with a deformation vector field in real-time. To show the feasibility of the technique, image synthesis accuracy and tumor localization accuracy were evaluated using the dataset generated by extended NURBS-Based Cardiac-Torso (XCAT) phantom and clinical 4DCT datasets from six patients, containing 10 CT datasets each. In the validation with XCAT phantom, motion range of the tumor in training data and validation data were about 10 and 15 mm, respectively, so as to simulate motion variation between 4DCT acquisition and treatment session. In the validation with patient 4DCT dataset, eight CT datasets from the 4DCT dataset were used in the training process. Two excluded inhale CT datasets can be regarded as the datasets with large deformations more than training dataset. CT images were generated for each respiratory phase using the corresponding marker displacement. Root mean squared error (RMSE), normalized RMSE (NRMSE), and structural similarity index measure (SSIM) between the original CT images and the synthesized CT images were evaluated as the quantitative indices of the accuracy of image synthesis. The accuracy of tumor localization was also evaluated. RESULTS: In the validation with XCAT phantom, the mean NRMSE, SSIM, and three-dimensional tumor localization error were 7.5 ± 1.1%, 0.95 ± 0.02, and 0.4 ± 0.3 mm, respectively. In the validation with patient 4DCT dataset, the mean RMSE, NRMSE, SSIM, and three-dimensional tumor localization error in six patients were 73.7 ± 19.6 HU, 9.2 ± 2.6%, 0.88 ± 0.04, and 0.8 ± 0.6 mm, respectively. These results suggest that the accuracy of the proposed technique is adequate when the respiratory motion is within the range of the training dataset. In the evaluation with a marker displacement larger than that of the training dataset, the mean RMSE, NRMSE, and tumor localization error were about 100 HU, 13%, and <2.0 mm, respectively, except for one case having large motion variation. The performance of the proposed method was similar to those of previous studies. Processing time to generate the volumetric image was <100 ms. CONCLUSION: We have shown the feasibility of the real-time CT image generation technique for volumetric imaging.


Asunto(s)
Marcadores Fiduciales , Neoplasias , Tomografía Computarizada Cuatridimensional , Humanos , Movimiento (Física) , Fantasmas de Imagen
14.
J Radiat Res ; 62(4): 626-633, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33948661

RESUMEN

In spot scanning proton therapy (SSPT), the spot position relative to the target may fluctuate through tumor motion even when gating the radiation by utilizing a fiducial marker. We have established a procedure that evaluates the delivered dose distribution by utilizing log data on tumor motion and spot information. The purpose of this study is to show the reliability of the dose distributions for liver tumors treated with real-time-image gated SSPT (RGPT). In the evaluation procedure, the delivered spot information and the marker position are synchronized on the basis of log data on the timing of the spot irradiation and fluoroscopic X-ray irradiation. Then a treatment planning system reconstructs the delivered dose distribution. Dose distributions accumulated for all fractions were reconstructed for eight liver cases. The log data were acquired in all 168 fractions for all eight cases. The evaluation was performed for the values of maximum dose, minimum dose, D99, and D5-D95 for the clinical target volumes (CTVs) and mean liver dose (MLD) scaled by the prescribed dose. These dosimetric parameters were statistically compared between the planned dose distribution and the reconstructed dose distribution. The mean difference of the maximum dose was 1.3% (95% confidence interval [CI]: 0.6%-2.1%). Regarding the minimum dose, the mean difference was 0.1% (95% CI: -0.5%-0.7%). The mean differences of D99, D5-D95 and MLD were below 1%. The reliability of dose distributions for liver tumors treated with RGPT-SSPT was shown by the evaluation of the accumulated dose distributions.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Terapia de Protones , Dosificación Radioterapéutica , Relación Dosis-Respuesta en la Radiación , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
15.
BJR Open ; 3(1): 20210064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35707757

RESUMEN

Objectives: The purpose of this study is to investigate whether verbal instructions are sufficient for bladder volume (BV) control not to deteriorate prostate position reproducibility in image-guided spot scanning proton therapy (SSPT) for localized prostate cancer. Methods: A total of 268 treatment sessions in 12 consecutive prostate cancer patients who were treated with image-guided SSPT with fiducial markers were retrospectively analyzed. In addition to strict rectal volume control procedures, simple verbal instructions to void urine one hour before the treatment were used here. The BV was measured by a Bladder Scan just before the treatment, and the prostate motion was measured by intraprostatic fiducial markers and two sets of X-ray fluoroscopy images. The correlation between the BV change and prostate motion was assessed by linear mixed-effects models and systematic and random errors according to the reproducibility of the BV. Results: The mean absolute BV change during treatment was from -98.7 to 86.3 ml (median 7.1 ml). The mean absolute prostate motion of the patients in the left-right direction was -1.46 to 1.85 mm; in the cranial-caudal direction it was -6.10 to 3.65 mm, and in the anteroposterior direction -1.90 to 5.23 mm. There was no significant relationship between the BV change and prostate motion during SSPT. The early and late genitourinary and gastrointestinal toxicity was minimal with a minimum follow up of 4.57 years. Conclusions: Simple verbal instructions about urination was suggested to be sufficient to control the BV not to impact on the prostate motion and clinical outcomes in image-guided SSPT. Careful attention to BV change is still needed when the seminal vesicle is to be treated. Advances in knowledge: Our data demonstrated that there was no apparent relationship between BV changes and prostate position reproducibility and simple verbal instruction about urination could be sufficient for image-guided SSPT.

16.
J Appl Clin Med Phys ; 22(1): 174-183, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33338323

RESUMEN

PURPOSE: To investigate potential advantages of adaptive intensity-modulated proton beam therapy (A-IMPT) by comparing it to adaptive intensity-modulated X-ray therapy (A-IMXT) for nasopharyngeal carcinomas (NPC). METHODS: Ten patients with NPC treated with A-IMXT (step and shoot approach) and concomitant chemotherapy between 2014 and 2016 were selected. In the actual treatment, 46 Gy in 23 fractions (46Gy/23Fx.) was prescribed using the initial plan and 24Gy/12Fx was prescribed using an adapted plan thereafter. New treatment planning of A-IMPT was made for the same patients using equivalent dose fractionation schedule and dose constraints. The dose volume statistics based on deformable images and dose accumulation was used in the comparison of A-IMXT with A-IMPT. RESULTS: The means of the Dmean of the right parotid gland (P < 0.001), right TM joint (P < 0.001), left TM joint (P < 0.001), oral cavity (P < 0.001), supraglottic larynx (P = 0.001), glottic larynx (P < 0.001), , middle PCM (P = 0.0371), interior PCM (P < 0.001), cricopharyngeal muscle (P = 0.03643), and thyroid gland (P = 0.00216), in A-IMPT are lower than those of A-IMXT, with statistical significance. The means of, D0.03cc , and Dmean of each sub portion of auditory apparatus and D30% for Eustachian tube and D0.5cc for mastoid volume in A-IMPT are significantly lower than those of A-IMXT. The mean doses to the oral cavity, supraglottic larynx, and glottic larynx were all reduced by more than 20 Gy (RBE = 1.1). CONCLUSIONS: An adaptive approach is suggested to enhance the potential benefit of IMPT compared to IMXT to reduce adverse effects for patients with NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
17.
J Radiat Res ; 62(2): 329-337, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33372202

RESUMEN

Pharyngeal cancer patients treated with intensity-modulated proton therapy (IMPT) using a model-based approach were retrospectively reviewed, and acute toxicities were analyzed. From June 2016 to March 2019, 15 pharyngeal (7 naso-, 5 oro- and 3 hypo-pharyngeal) cancer patients received IMPT with robust optimization. Simulation plans for IMPT and intensity-modulated X-ray therapy (IMXT) were generated before treatment. We also reviewed 127 pharyngeal cancer patients with IMXT in the same treatment period. In the simulation planning comparison, all of the normal-tissue complication probability values for dysphagia, dysgeusia, tube-feeding dependence and xerostomia were lower for IMPT than for IMXT in the 15 patients. After completing IMPT, 13 patients completed the evaluation, and 12 of these patients had a complete response. The proportions of patients who experienced grade 2 or worse acute toxicities in the IMPT and IMXT cohorts were 21.4 and 56.5% for dysphagia (P < 0.05), 46.7 and 76.3% for dysgeusia (P < 0.05), 73.3 and 62.8% for xerostomia (P = 0.43), 73.3 and 90.6% for mucositis (P = 0.08) and 66.7 and 76.4% for dermatitis (P = 0.42), respectively. Multivariate analysis revealed that IMPT was independently associated with a lower rate of grade 2 or worse dysphagia and dysgeusia. After propensity score matching, 12 pairs of IMPT and IMXT patients were selected. Dysphagia was also statistically lower in IMPT than in IMXT (P < 0.05). IMPT using a model-based approach may have clinical benefits for acute dysphagia.


Asunto(s)
Neoplasias Faríngeas/radioterapia , Terapia de Protones/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias Faríngeas/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Rayos X , Adulto Joven
18.
J Appl Clin Med Phys ; 21(12): 10-19, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33151643

RESUMEN

A synchrotron-based real-time image gated spot-scanning proton beam therapy (RGPT) system with inserted fiducial markers can irradiate a moving tumor with high accuracy. As gated treatments increase the beam delivery time, this study aimed to investigate the frequency of intra-field adjustments corresponding to the baseline shift or drift and the beam delivery efficiency of a synchrotron-based RGPT system. Data from 118 patients corresponding to 127 treatment plans and 2810 sessions between October 2016 and March 2019 were collected. We quantitatively analyzed the proton beam delivery time, the difference between the ideal beam delivery time based on a simulated synchrotron magnetic excitation pattern and the actual treatment beam delivery time, frequency corresponding to the baseline shift or drift, and the gating efficiency of the synchrotron-based RGPT system according to the proton beam delivery machine log data. The mean actual beam delivery time was 7.1 min, and the simulated beam delivery time in an ideal environment with the same treatment plan was 2.9 min. The average difference between the actual and simulated beam delivery time per session was 4.3 min. The average frequency of intra-field adjustments corresponding to baseline shift or drift and beam delivery efficiency were 21.7% and 61.8%, respectively. Based on our clinical experience with a synchrotron-based RGPT system, we determined the frequency corresponding to baseline shift or drift and the beam delivery efficiency using the beam delivery machine log data. To maintain treatment accuracy within ± 2.0 mm, intra-field adjustments corresponding to baseline shift or drift were required in approximately 20% of cases. Further improvements in beam delivery efficiency may be realized by shortening the beam delivery time.


Asunto(s)
Neoplasias , Terapia de Protones , Marcadores Fiduciales , Humanos , Neoplasias/radioterapia , Cintigrafía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Sincrotrones
19.
Med Phys ; 47(9): 4644-4655, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32652574

RESUMEN

PURPOSE: The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/ß)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS: Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/ß)x and repair parameters ((α/ß)x  = 1-15 Gy, T1/2  = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS: The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/ß)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/ß)x range of 1-15 Gy for a fixed value of T1/2  = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/ß)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION: The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.


Asunto(s)
Terapia de Protones , Protones , Relación Dosis-Respuesta en la Radiación , Transferencia Lineal de Energía , Masculino , Fantasmas de Imagen , Radiación Ionizante , Efectividad Biológica Relativa
20.
J Appl Clin Med Phys ; 21(4): 42-50, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32150329

RESUMEN

PURPOSE: While a large amount of experimental data suggest that the proton relative biological effectiveness (RBE) varies with both physical and biological parameters, current commercial treatment planning systems (TPS) use the constant RBE instead of variable RBE models, neglecting the dependence of RBE on the linear energy transfer (LET). To conduct as accurate a clinical evaluation as possible in this circumstance, it is desirable that the dosimetric parameters derived by TPS ( D RBE = 1.1 ) are close to the "true" values derived with the variable RBE models ( D v RBE ). As such, in this study, the closeness of D RBE = 1.1 to D v RBE was compared between planning target volume (PTV)-based and robust plans. METHODS: Intensity-modulated proton therapy (IMPT) treatment plans for two Radiation Therapy Oncology Group (RTOG) phantom cases and four nasopharyngeal cases were created using the PTV-based and robust optimizations, under the assumption of a constant RBE of 1.1. First, the physical dose and dose-averaged LET (LETd ) distributions were obtained using the analytical calculation method, based on the pencil beam algorithm. Next, D v RBE was calculated using three different RBE models. The deviation of D v RBE from D RBE = 1.1 was evaluated with D99 and Dmax , which have been used as the evaluation indices for clinical target volume (CTV) and organs at risk (OARs), respectively. The influence of the distance between the OAR and CTV on the results was also investigated. As a measure of distance, the closest distance and the overlapped volume histogram were used for the RTOG phantom and nasopharyngeal cases, respectively. RESULTS: As for the OAR, the deviations of D max v RBE from D max RBE = 1.1 were always smaller in robust plans than in PTV-based plans in all RBE models. The deviation would tend to increase as the OAR was located closer to the CTV in both optimization techniques. As for the CTV, the deviations of D 99 v RBE from D 99 RBE = 1.1 were comparable between the two optimization techniques, regardless of the distance between the CTV and the OAR. CONCLUSION: Robust optimization was found to be more favorable than PTV-based optimization in that the results presented by TPS were closer to the "true" values and that the clinical evaluation based on TPS was more reliable.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Efectividad Biológica Relativa , Algoritmos , Humanos , Neoplasias Nasofaríngeas/radioterapia , Órganos en Riesgo , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...