Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone Rep ; 7: 70-82, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28948197

RESUMEN

Bisphosphonates (BPs) and teriparatide (TPTD) are both effective treatments for osteoporosis, but BP treatment prior to daily TPTD treatment has been shown to impair the effect of TPTD in some clinical studies. In contrast, the loss of bone mineral density (BMD) that occurs after withdrawal of TPTD can be prevented by BP treatment. Although various studies have investigated the combination and/or sequential use of BP and TPTD, there have been no clinical studies investigating sequential treatment with zoledronic acid (ZOL) and TPTD (or vice versa). In this study, we evaluated the effects of sequential treatment with TPTD followed by ZOL, and ZOL followed by TPTD, using ovariectomized (OVX) rats. Two months after OVX, osteopenic rats were treated with ZOL, TPTD, or vehicle for a period of 4 months (first treatment period), and then the treatments were switched and administered for another 4 months (second treatment period). The group treated with ZOL followed by TPTD showed an immediate increase in BMD of the proximal tibia and greater BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur than the group treated with ZOL followed by vehicle. Serum osteocalcin, a marker of bone formation, increased rapidly after switching to TPTD from ZOL. The group treated with TPTD followed by ZOL did not lose BMD in the proximal tibia after TPTD was stopped, while the group treated with TPTD followed by vehicle did lose BMD. The BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur were greater in the group treated with TPTD followed by ZOL than in the group treated with TPTD followed by vehicle. The increase in serum osteocalcin and urinary CTX after withdrawal of TPTD was prevented by the switch from TPTD to ZOL. In conclusion, our results demonstrate that switching from ZOL to TPTD resulted in a non-attenuated anabolic response in the lumbar spine and femur of OVX rats. In addition, switching from TPTD to ZOL caused BMD to be maintained or further increased. If these results can be reproduced in a clinical setting, the sequential use of ZOL followed by TPTD or vice versa in the treatment of osteoporosis patients would contribute to increases in BMD that, hopefully, would translate into a corresponding decrease in the incidence of vertebral and non-vertebral fractures.

2.
Osteoporos Int ; 22(8): 2373-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20959962

RESUMEN

UNLABELLED: Improvements in total content of enzymatic cross-linking, the ratio of hydroxylysine-derived enzymatic cross-links, and non-enzymatic advanced glycation end product cross-link formation from once-weekly administration of hPTH(1-34) for 18 months in OVX cynomolgus monkeys contributed to the improvement of bone strength. INTRODUCTION: Parathyroid hormone (PTH) is used for the treatment of osteoporosis. To elucidate the contribution of material properties to bone strength after once-weekly treatment with hPTH(1-34) in an ovariectomized (OVX) primate model, the content of collagen and enzymatic immature, mature, and non-enzymatic cross-links, collagen maturity, trabecular architecture, and mineralization in vertebrae were simultaneously estimated. METHODS: Adult female cynomolgus monkeys were divided into four groups (n = 18-20 each) as follows: SHAM group, OVX group, and OVX monkeys given once-weekly subcutaneous injections of hPTH(1-34) either at 1.2 or 6.0 µg/kg (low- or high-PTH groups) for 18 months. The content of collagen, enzymatic and non-enzymatic cross-linking pentosidine, collagen maturity, trabecular architecture, mineralization, and cancellous bone strength of vertebrae were analyzed. RESULTS: Low-PTH and high-hPTH treatments increased the content of enzymatic immature and mature cross-links, bone volume (BV/TV), and trabecular thickness, and decreased pentosidine, compared with the OVX group. Stepwise logistic regression analysis revealed that BV/TV, the content of total enzymatic cross-links, and calcium content independently affected ultimate load (model R (2) = 0.748, p < 0.001) and breaking energy (model R (2) = 0.702, p < 0.001). BV/TV was the most powerful and enzymatic cross-link content was the second powerful determinant of both ultimate load and breaking energy. The most powerful determinant of stiffness was the enzymatic cross-link content (model R (2) = 0.270, p < 0.001). CONCLUSION: Once-weekly preventive administration of hPTH(1-34) increased the total contents of immature and mature enzymatic cross-links, which contributed significantly to vertebral cancellous bone strength.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Densidad Ósea/efectos de los fármacos , Colágeno/metabolismo , Osteoporosis/metabolismo , Teriparatido/farmacología , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Conservadores de la Densidad Ósea/administración & dosificación , Conservadores de la Densidad Ósea/uso terapéutico , Calcio/metabolismo , Fuerza Compresiva/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Evaluación Preclínica de Medicamentos/métodos , Femenino , Productos Finales de Glicación Avanzada/metabolismo , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/metabolismo , Vértebras Lumbares/fisiología , Lisina/análogos & derivados , Lisina/metabolismo , Macaca fascicularis , Osteoporosis/fisiopatología , Osteoporosis/prevención & control , Ovariectomía , Fosfatos/metabolismo , Teriparatido/administración & dosificación , Teriparatido/uso terapéutico , Microtomografía por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA