Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(15): 2949-2965.e10, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39053456

RESUMEN

The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.


Asunto(s)
Núcleo Celular , Empalme del ARN , Proteínas de Unión al ARN , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Precursores del ARN/metabolismo , Precursores del ARN/genética , Mutación , Empalmosomas/metabolismo , Empalmosomas/genética , Células HeLa , Células HEK293
2.
Dis Model Mech ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38903011

RESUMEN

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Músculo Esquelético , Pliegue de Proteína , Respuesta de Proteína Desplegada , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Apoptosis , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Especificidad de Órganos , Proteína Forkhead Box O1/metabolismo , Técnicas de Sustitución del Gen , Proteína 1 de Unión a la X-Box/metabolismo , Agregado de Proteínas , Complejo de la Endopetidasa Proteasomal/metabolismo
3.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233267

RESUMEN

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Asunto(s)
Síndromes Miasténicos Congénitos , Animales , Ratones , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Calcitriol/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Neuronas Motoras/metabolismo
4.
Genes (Basel) ; 14(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761905

RESUMEN

Single nucleotide variants (SNVs) affecting the first nucleotide G of an exon (Fex-SNVs) identified in various diseases are mostly recognized as missense or nonsense variants. Their effect on pre-mRNA splicing has been seldom analyzed, and no curated database is available. We previously reported that Fex-SNVs affect splicing when the length of the polypyrimidine tract is short or degenerate. However, we cannot readily predict the splicing effects of Fex-SNVs. We here scrutinized the available literature and identified 106 splicing-affecting Fex-SNVs based on experimental evidence. We similarly identified 106 neutral Fex-SNVs in the dbSNP database with a global minor allele frequency (MAF) of more than 0.01 and less than 0.50. We extracted 115 features representing the strength of splicing cis-elements and developed machine-learning models with support vector machine, random forest, and gradient boosting to discriminate splicing-affecting and neutral Fex-SNVs. Gradient boosting-based LightGBM outperformed the other two models, and the length and nucleotide compositions of the polypyrimidine tract played critical roles in the discrimination. Recursive feature elimination showed that the LightGBM model using 15 features achieved the best performance with an accuracy of 0.80 ± 0.12 (mean and SD), a Matthews Correlation Coefficient (MCC) of 0.57 ± 0.15, an area under the curve of the receiver operating characteristics curve (AUROC) of 0.86 ± 0.08, and an area under the curve of the precision-recall curve (AUPRC) of 0.87 ± 0.09 using a 10-fold cross-validation. We developed a web service program, named FexSplice that accepts a genomic coordinate either on GRCh37/hg19 or GRCh38/hg38 and returns a predicted probability of aberrant splicing of A, C, and T variants.


Asunto(s)
Nucleótidos , Empalme del ARN , Exones/genética , Bases de Datos Factuales , Frecuencia de los Genes , Nucleótidos/genética
5.
iScience ; 26(10): 107746, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37744035

RESUMEN

Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.

6.
Ecotoxicol Environ Saf ; 264: 115482, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717354

RESUMEN

The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.


Asunto(s)
Campos Electromagnéticos , Proteínas de Choque Térmico , Humanos , Acetilación , Campos Electromagnéticos/efectos adversos , Células HEK293 , Pliegue de Proteína , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Adenosina Trifosfato
7.
Neurosci Res ; 194: 58-65, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37146794

RESUMEN

Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.


Asunto(s)
Atrofia Muscular Espinal , Ratones , Humanos , Animales , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Modelos Animales de Enfermedad , Familia de Aldehído Deshidrogenasa 1/metabolismo , Retinal-Deshidrogenasa/metabolismo
8.
Commun Biol ; 5(1): 453, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552531

RESUMEN

Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1-8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson's disease.


Asunto(s)
Mitofagia , Proteínas Quinasas , Humanos , Campos Magnéticos , Mitocondrias , Biogénesis de Organelos
9.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270030

RESUMEN

Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.


Asunto(s)
Neoplasias , Respuesta de Proteína Desplegada , Animales , Proliferación Celular , Hidrógeno/metabolismo , Hidrógeno/farmacología , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
10.
EMBO J ; 40(22): e107485, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34605568

RESUMEN

Although large exons cannot be readily recognized by the spliceosome, many are evolutionarily conserved and constitutively spliced for inclusion in the processed transcript. Furthermore, whether large exons may be enriched in a certain subset of proteins, or mediate specific functions, has remained unclear. Here, we identify a set of nearly 3,000 SRSF3-dependent large constitutive exons (S3-LCEs) in human and mouse cells. These exons are enriched for cytidine-rich sequence motifs, which bind and recruit the splicing factors hnRNP K and SRSF3. We find that hnRNP K suppresses S3-LCE splicing, an effect that is mitigated by SRSF3 to thus achieve constitutive splicing of S3-LCEs. S3-LCEs are enriched in genes for components of transcription machineries, including mediator and BAF complexes, and frequently contain intrinsically disordered regions (IDRs). In a subset of analyzed S3-LCE-containing transcription factors, SRSF3 depletion leads to deletion of the IDRs due to S3-LCE exon skipping, thereby disrupting phase-separated assemblies of these factors. Cytidine enrichment in large exons introduces proline/serine codon bias in intrinsically disordered regions and appears to have been evolutionarily acquired in vertebrates. We propose that layered splicing regulation by hnRNP K and SRSF3 ensures proper phase-separation of these S3-LCE-containing transcription factors in vertebrates.


Asunto(s)
Exones , Factores de Empalme Serina-Arginina/genética , Factores de Transcripción/genética , Vertebrados/genética , Animales , Línea Celular , Citidina/genética , Evolución Molecular , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Poliadenilación , Empalme del ARN , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/metabolismo
11.
Front Genet ; 12: 701076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349788

RESUMEN

Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions -50 (Int-50) to -3 (Int-3) close to the 3' ss, we developed light gradient boosting machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with 0.01 ≤ minor allelic frequency (MAF) < 0.50. The LightGBM models were generated using features representing splicing cis-elements. The average recall/sensitivity and specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were 0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the average recall/sensitivity of 0.800 of IntSplice that we previously made with support vector machine (SVM) modeling for the same intronic positions. In contrast, the specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice. For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was not used to train IntSplice. After excluding the test dataset from the training dataset, we generated IntSplice2-BM and compared it with IntSplice using the test dataset. IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value (NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service at https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.

12.
Front Mol Neurosci ; 13: 154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117128

RESUMEN

The neuromuscular junction (NMJ) is a prototypic chemical synapse between the spinal motor neuron and the motor endplate. Gene expression profiles of the motor endplate are not fully elucidated. Collagen Q (ColQ) is a collagenic tail subunit of asymmetric forms of acetylcholinesterase and is driven by two distinct promoters. pColQ1 is active throughout the slow-twitch muscle, whereas pColQ1a is active at the motor endplate of fast-twitch muscle. We made a transgenic mouse line that expresses nuclear localization signal (NLS)-attached Cre recombinase under the control of pColQ1a (pColQ1a-Cre mouse). RiboTag mouse expresses an HA-tagged ribosomal subunit, RPL22, in cells expressing Cre recombinase. We generated pColQ1a-Cre:RiboTag mouse, and confirmed that HA-tagged RPL22 was enriched at the NMJ of tibialis anterior (TA) muscle. Next, we confirmed that Chrne and Musk that are specifically expressed at the NMJ were indeed enriched in HA-immunoprecipitated (IP) RNA, whereas Sox10 and S100b, markers for Schwann cells, and Icam1, a marker for vascular endothelial cells, and Pax3, a marker for muscle satellite cells, were scarcely detected. Gene set enrichment analysis (GSEA) of RNA-seq data showed that "phosphatidylinositol signaling system" and "extracellular matrix receptor interaction" were enriched at the motor endplate. Subsequent analysis revealed that genes encoding diacylglycerol kinases, phosphatidylinositol kinases, phospholipases, integrins, and laminins were enriched at the motor endplate. We first characterized the gene expression profile under translation at the motor endplate of TA muscle using the RiboTag technique. We expect that our gene expression profiling will help elucidate molecular mechanisms of the development, maintenance, and pathology of the NMJ.

13.
EMBO Rep ; 21(5): e49890, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32189459

RESUMEN

RNA processing occurs co-transcriptionally through the dynamic recruitment of RNA processing factors to RNA polymerase II (RNAPII). However, transcriptome-wide identification of protein-RNA interactions specifically assembled on transcribing RNAPII is challenging. Here, we develop the targeted RNA immunoprecipitation sequencing (tRIP-seq) method that detects protein-RNA interaction sites in thousands of cells. The high sensitivity of tRIP-seq enables identification of protein-RNA interactions at functional subcellular levels. Application of tRIP-seq to the FUS-RNA complex in the RNAPII machinery reveals that FUS binds upstream of alternative polyadenylation (APA) sites of nascent RNA bound to RNAPII, which retards RNAPII and suppresses the recognition of the polyadenylation signal by CPSF. Further tRIP-seq analyses demonstrate that the repression of APA is achieved by a complex composed of FUS and U1 snRNP on RNAPII, but not by either one alone. Moreover, our analysis reveals that FUS mutations in familial amyotrophic lateral sclerosis (ALS) that impair the FUS-U1 snRNP interaction aberrantly activate the APA sites. tRIP-seq provides new insights into the regulatory mechanism of co-transcriptional RNA processing by RNA processing factors.


Asunto(s)
Poliadenilación , Proteína FUS de Unión a ARN , Ribonucleoproteína Nuclear Pequeña U1 , Humanos , ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
14.
NAR Genom Bioinform ; 2(2): lqaa038, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33543123

RESUMEN

In predicting the pathogenicity of a nonsynonymous single-nucleotide variant (nsSNV), a radical change in amino acid properties is prone to be classified as being pathogenic. However, not all such nsSNVs are associated with human diseases. We generated random forest (RF) models individually for each amino acid substitution to differentiate pathogenic nsSNVs in the Human Gene Mutation Database and common nsSNVs in dbSNP. We named a set of our models 'Individual Meta RF' (InMeRF). Ten-fold cross-validation of InMeRF showed that the areas under the curves (AUCs) of receiver operating characteristic (ROC) and precision-recall curves were on average 0.941 and 0.957, respectively. To compare InMeRF with seven other tools, the eight tools were generated using the same training dataset, and were compared using the same three testing datasets. ROC-AUCs of InMeRF were ranked first in the eight tools. We applied InMeRF to 155 pathogenic and 125 common nsSNVs in seven major genes causing congenital myasthenic syndromes, as well as in VANGL1 causing spina bifida, and found that the sensitivity and specificity of InMeRF were 0.942 and 0.848, respectively. We made the InMeRF web service, and also made genome-wide InMeRF scores available online (https://www.med.nagoya-u.ac.jp/neurogenetics/InMeRF/).

15.
Artículo en Inglés | MEDLINE | ID: mdl-28949076

RESUMEN

Development of next generation sequencing technologies has enabled detection of extensive arrays of germline and somatic single nucleotide variations (SNVs) in human diseases. SNVs affecting intronic GT-AG dinucleotides invariably compromise pre-mRNA splicing. Most exonic SNVs introduce missense/nonsense codons, but some affect auxiliary splicing cis-elements or generate cryptic GT-AG dinucleotides. Similarly, most intronic SNVs are silent, but some affect canonical and auxiliary splicing cis-elements or generate cryptic GT-AG dinucleotides. However, prediction of the splicing effects of SNVs is challenging. The splicing effects of SNVs generating cryptic AG or disrupting canonical AG can be inferred from the AG-scanning model. Similarly, the splicing effects of SNVs affecting the first nucleotide G of an exon can be inferred from AG-dependence of the 3' splice site (ss). A variety of tools have been developed for predicting the splicing effects of SNVs affecting the 5' ss, as well as exonic and intronic splicing enhancers/silencers. In contrast, only two tools, the Human Splicing Finder and the SVM-BP finder, are available for predicting the position of the branch point sequence. Similarly, IntSplice and Splicing based Analysis of Variants (SPANR) are the only tools to predict the splicing effects of intronic SNVs. The rules and tools introduced in this review are mostly based on observations of a limited number of genes, and no rule or tool can ensure 100% accuracy. Experimental validation is always required before any clinically relevant conclusions are drawn. Development of efficient tools to predict aberrant splicing, however, will facilitate our understanding of splicing pathomechanisms in human diseases. WIREs RNA 2018, 9:e1451. doi: 10.1002/wrna.1451 This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses In Vitro and In Silico.


Asunto(s)
Biología Computacional/métodos , Exones , Intrones , Biología Molecular/métodos , Mutación , Empalme del ARN
16.
Sci Rep ; 7(1): 10446, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874828

RESUMEN

Dok-7 is a non-catalytic adaptor protein that facilitates agrin-induced clustering of acetylcholine receptors (AChR) at the neuromuscular junction. Alternative selection of 5' splice sites (SSs) of DOK7 intron 4 generates canonical and frame-shifted transcripts. We found that the canonical full-length Dok-7 enhanced AChR clustering, whereas the truncated Dok-7 did not. We identified a splicing cis-element close to the 3' end of exon 4 by block-scanning mutagenesis. RNA affinity purification and mass spectrometry revealed that SRSF1 binds to the cis-element. Knocking down of SRSF1 enhanced selection of the intron-distal 5' SS of DOK7 intron 4, whereas MS2-mediated artificial tethering of SRSF1 to the identified cis-element suppressed it. Isolation of an early spliceosomal complex revealed that SRSF1 inhibited association of U1 snRNP to the intron-distal 5' SS, and rather enhanced association of U1 snRNP to the intron-proximal 5' SS, which led to upregulation of the canonical DOK7 transcript. Integrated global analysis of CLIP-seq and RNA-seq also indicated that binding of SRSF1 immediately upstream to two competing 5' SSs suppresses selection of the intron-distal 5' SS in hundreds of human genes. We demonstrate that SRSF1 critically regulates alternative selection of adjacently placed 5' SSs by modulating binding of U1 snRNP.


Asunto(s)
Empalme Alternativo , Exones , Intrones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sitios de Empalme de ARN , Factores de Empalme Serina-Arginina/metabolismo , Animales , Sitios de Unión , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Unión Proteica , Ratas , Elementos Reguladores de la Transcripción
17.
Gene ; 618: 57-64, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28392367

RESUMEN

FUS, an RNA-binding protein (RBP), is mutated or abnormally regulated in neurodegenerative disorders. FUS regulates various aspects of RNA metabolisms. FUS-binding sites are rich in GU contents and are highly degenerative. FUS-binding motifs of GGU, GGUG, GUGGU and CGCGC have been previously reported. These motifs, however, are applicable to a small fraction of FUS-binding sites. As CLIP-seq tags are enriched in genes that are highly expressed, we normalized CLIP-seq tags by Nascent-seq tags or RNA-seq tags of mouse N2a cells. Nascent-seq identifies nascent transcripts before being processed for splicing and polyadenylation. We extracted frequently observed 4-nt motifs from Nascent-seq-normalized CLIP regions, RNA-seq-normalized CLIP regions, and native CLIP regions. Specific GU-rich motifs were best detected in Nascent-seq-normalized CLIP regions. Analysis of structural motifs using Nascent-seq-normalized CLIP regions also predicted GU-rich sequence forming a stem structure. Sensitivity and specificity were calculated by examining whether the extracted motifs were present at the cross-linking-induced mutation sites (CIMS), where FUS was directly bound. We found that a combination of six motifs (UGUG, CUGG, UGGU, GCUG, GUGG, and UUGG), which were extracted from Nascent-seq-normalized CLIP-regions, had a better discriminative power than (i) motifs extracted from RNA-seq-normalized CLIP regions, (ii) motifs extracted from native CLIP regions, (iii) previously reported individual motifs, or (iv) 15 motifs in SpliceAid 2. Validation of the 6 GU-rich (6GUR) motifs using CLIP-seq of the cerebrum and the whole brain showed that the 6GUR motifs were specifically enriched in CIMS. The number of the 6GUR motifs in an uninterrupted region was counted and multiplied by four to calculate the area, which was defined as the 6GUR-Score. The 6GUR-Score of 8 or more best discriminated CIMS from CIMS-flanking regions. We propose that the 6GUR motifs predict FUS-binding sites more efficiently than previously reported individual motifs or 15 motifs in SpliceAid 2.


Asunto(s)
Motivos de Nucleótidos , Proteína FUS de Unión a ARN/metabolismo , ARN/química , Análisis de Secuencia de ARN/métodos , Animales , Sitios de Unión , Encéfalo/metabolismo , Línea Celular Tumoral , Ratones , Unión Proteica , ARN/metabolismo , Proteína FUS de Unión a ARN/química , Análisis de Secuencia de ARN/normas
18.
Nucleic Acids Res ; 45(3): 1455-1468, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180311

RESUMEN

Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Empalme Alternativo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Poliadenilación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Unión Competitiva , Células CACO-2 , Línea Celular , Factor de Estimulación del Desdoblamiento , Exones , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/antagonistas & inhibidores , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos Reguladores de la Transcripción
19.
J Neurochem ; 142 Suppl 2: 64-72, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28072465

RESUMEN

We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChET , AChEH , and AChER are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Asunto(s)
Colinérgicos/farmacología , Exones/genética , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Empalme del ARN/efectos de los fármacos , Animales , Colinérgicos/metabolismo , Humanos , Unión Neuromuscular/genética , Empalme del ARN/genética
20.
J Hum Genet ; 61(7): 633-40, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27009626

RESUMEN

Precise spatiotemporal regulation of splicing is mediated by splicing cis-elements on pre-mRNA. Single-nucleotide variations (SNVs) affecting intronic cis-elements possibly compromise splicing, but no efficient tool has been available to identify them. Following an effect-size analysis of each intronic nucleotide on annotated alternative splicing, we extracted 105 parameters that could affect the strength of the splicing signals. However, we could not generate reliable support vector regression models to predict the percent-splice-in (PSI) scores for normal human tissues. Next, we generated support vector machine (SVM) models using 110 parameters to directly differentiate pathogenic SNVs in the Human Gene Mutation Database and normal SNVs in the dbSNP database, and we obtained models with a sensitivity of 0.800±0.041 (mean and s.d.) and a specificity of 0.849±0.021. Our IntSplice models were more discriminating than SVM models that we generated with Shapiro-Senapathy score and MaxEntScan::score3ss. We applied IntSplice to a naturally occurring and nine artificial intronic mutations in RAPSN causing congenital myasthenic syndrome. IntSplice correctly predicted the splicing consequences for nine of the ten mutants. We created a web service program, IntSplice (http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) to predict splicing-affecting SNVs at intronic positions from -50 to -3.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Intrones , Polimorfismo de Nucleótido Simple , Empalme del ARN , Programas Informáticos , Adulto , Línea Celular , Bases de Datos de Ácidos Nucleicos , Expresión Génica , Humanos , Mutación , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/genética , Especificidad de Órganos/genética , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA