Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 964: 176306, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38145647

RESUMEN

During the production of orexin A and B from preproorexin, a common precursor protein, in hypothalamic orexin neurons, C-terminal peptide (herein called preproorexin C-peptide) is concomitantly produced via post-translational processing. The predicted three-dimensional structure of preproorexin C-peptide is similar among mammalian species, suggestive of a conserved function in the mammalian brain. However, C-peptide has long been regarded as a non-functional peptide. We herein examined the effects of rat and/or mouse preproorexin C-peptide on gene expression and cell viability in cultured rat cerebrocortical cells and on memory behavior in C57BL/6J mice. Rat and mouse C-peptides both increased brain-derived neurotrophic factor (Bdnf) mRNA levels. Moreover, C-peptide enhanced high K+-, glutamate-, and BDNF-induced increases in Bdnf mRNA levels without affecting forskolin-induced Bdnf expression. H-89, a protein kinase A inhibitor, blocked C-peptide-induced Bdnf expression, whereas rolipram, a phosphodiesterase inhibitor, enhanced this effect. Intracellular cyclic AMP concentrations were elevated by C-peptide. These results demonstrate that preproorexin C-peptide promoted Bdnf mRNA expression by a cyclic AMP-dependent mechanism. Eleven amino acids at the N terminus of rat preproorexin C-peptide exerted similar effects on Bdnf expression as full-length preproorexin C-peptide. Preproorexin C-peptide also exerted protective effects against CoCl2-induced neuronal cell death. An intracerebroventricular injection of mouse preproorexin C-peptide induced c-fos and Bdnf expression in the cerebral cortex and hippocampus and enhanced novel object recognition memory in mice. Collectively, the present results show that preproorexin C-peptide is a functional substance, at least in some pharmacological and neuronal settings.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Orexinas , Fragmentos de Péptidos , Animales , Ratones , Ratas , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Orexinas/farmacología , ARN Mensajero/metabolismo , Fragmentos de Péptidos/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo
2.
Plant Cell ; 34(10): 3543-3556, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877068

RESUMEN

The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.


Asunto(s)
Solanum lycopersicum , Viroides , Transporte Activo de Núcleo Celular , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compuestos Organofosforados , Enfermedades de las Plantas/genética , ARN , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Viroides/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
3.
Sci Technol Adv Mater ; 22(1): 160-172, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762891

RESUMEN

Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.

4.
Viruses ; 10(4)2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601476

RESUMEN

Intercellular RNA trafficking has been shown as a widely-existing phenomenon that has significant functions in many aspects of biology. Viroids, circular noncoding RNAs that cause plant diseases, have been a model to dissect the role of RNA structural motifs in regulating intercellular RNA trafficking in plants. Recent studies on potato spindle tuber viroid (PSTVd) showed that the RNA motif loop 19 is important for PSTVd to spread from palisade to spongy mesophyll in infected leaves. Here, we performed saturated mutational analysis to uncover all possible functional variants of loop 19 and exploit this data to pinpoint to a three-dimensional structural model of this motif. Interestingly, we found that two distinct structural motifs can replace loop 19 and retain the systemic trafficking capacity. One of the alternative structures rapidly emerged from the inoculation using a loop 19 abolished mutant that is not capable of systemic trafficking. Our observation indicates the flexibility of multiple structural arrangements interchangeably exerting similar function at a particular RNA locus. Taken together, this study deepens the understanding of RNA structural motifs-regulated viroid RNA trafficking, which has broad implications for studying RNA intercellular trafficking as well.


Asunto(s)
Motivos de Nucleótidos/genética , Solanum tuberosum/virología , Viroides/genética , Viroides/metabolismo , Transporte Biológico , Modelos Moleculares , Conformación de Ácido Nucleico , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral
5.
Plant Cell ; 23(1): 258-72, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21258006

RESUMEN

Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.


Asunto(s)
Células del Mesófilo/virología , Nicotiana/virología , Virus de Plantas/fisiología , ARN Viral/química , Viroides/fisiología , Secuencia de Bases , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Virus de Plantas/genética , Análisis de Secuencia de ARN , Viroides/genética
6.
Viruses ; 1(2): 210-21, 2009 09.
Artículo en Inglés | MEDLINE | ID: mdl-21994546

RESUMEN

Viroids are noncoding RNAs that infect plants. In order to establish systemic infection, these RNAs must traffic from an initially infected host cell into neighboring cells and ultimately throughout a whole plant. Recent studies have identified structural motifs in a viroid that are required for trafficking, enabling further studies on the mechanisms of their function. Some cellular proteins interact with viroids in vivo and may play a role in viroid trafficking, which can now be directly tested by using a virus-induced gene silencing system that functions efficiently in plant species from which these factors were identified. This review discusses these recent advances, unanswered questions and the use of viroid infection as an highly productive model to elucidate mechanisms of RNA trafficking that is of broad biological significance.

7.
J Virol ; 81(6): 2980-94, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17202210

RESUMEN

RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/fisiología , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/metabolismo , Viroides/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Solanum lycopersicum/virología , Plantas Modificadas Genéticamente , Protoplastos/virología , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Solanum tuberosum/virología , Especificidad por Sustrato , Nicotiana/genética , Nicotiana/virología , Transcripción Genética , Viroides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...