Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176441

RESUMEN

Wiegand wires are unique ferromagnetic materials that display rapid magnetization reversal and a large Barkhausen jump under an applied field. This stable reversal can be used to induce a periodic pulse voltage in a pickup coil wrapped around the Wiegand wire. To unlock the full potential of Wiegand wires for magnetic sensors and devices, the magnetic structure and magnetization state of the Wiegand wire must be fully elucidated. In this study, hysteresis loops were used to reveal the magnetic structure of Wiegand wires. Wiegand wires of different diameters magnetized under different applied magnetic field strengths were analyzed in detail. Our results show that Wiegand wires 0.06 mm in diameter are composed solely of a hard magnetic core. Wiegand wires above 0.10 mm in diameter have a hard magnetic core, a middle layer, and a soft layer that decreases in thickness but increases in coercivity as the wire diameter decreases. Then, theoretical models were built to predict the magnetic structure of Wiegand wires under an applied field for the first time. The magnetization process of Wiegand wires with different diameters under different applied magnetic fields was also analyzed.

2.
Materials (Basel) ; 15(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36234292

RESUMEN

Various coercive force field components in Wiegand wire exhibit a significant magnetization reversal under an applied magnetic field. A fast magnetization reversal is accompanied by a large Barkhausen jump, which induces a pulse voltage in a pickup coil wound around the Wiegand wire which serves as a power source for the devices or sensors. This study aims to elucidate the magnetization reversal in the Wiegand wire by using a first-order reversal curve (FORC) diagram method. The magnetic structure of the Wiegand wire typically comprises three layers: a soft layer, middle layer, and hard layer. In this study, we analyze the coercive and interactive force fields between the adjacent layers. The results demonstrate a high coercivity of the center core and a lower coercivity of the outer layer of the wire.

3.
Materials (Basel) ; 15(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36079321

RESUMEN

Wiegand wires exhibit a unique fast magnetization reversal feature in the soft layer that is accompanied by a large Barkhausen jump, which is also known as the Wiegand effect. However, the magnetic structure and interaction in Wiegand wires cannot be evaluated by conventional magnetization hysteresis curves. We analyzed the magnetic properties of Wiegand wires at various lengths by measuring the first-order reversal curves (FORCs) and by evaluating the FORC diagram from a series of FORCs. In particular, we used a FeCoV Wiegand wire with a magnetic soft outer layer, an intermediate layer, and a hard core. The magnetization of the various layers in the wire could be identified from the FORC diagrams. Furthermore, based on the interaction between multiple layers, the positive and negative polarity of the FORC distribution was clarified.

4.
Nanotechnology ; 33(48)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001950

RESUMEN

The physical role of magnetically semi-hard Co2+cation addition in enhancing the AC heat induction temperature (TAC) or specific loss power (SLP) of solid (CoxMn1-x)Fe2O4superparamagnetic iron oxide nanoparticles (SPIONPs) was systematically investigated at the biologically safe and physiologically tolerable range ofHAC(HAC,safe= 1.12 × 109A m-1s-1,fappl= 100 kHz,Happl= 140 Oe (11.2 A m-1)) to demonstrate which physical parameter would be the most critical and dominant in enhancing theTAC(SLP) of SPIONPs. According to the experimentally and theoretically analyzed results, it was clearly demonstrated that the enhancement of magnetic anisotropy (Ku)-dependent AC magnetic softness including the Néel relaxation time constantτN(≈τeff, effective relaxation time constant), and its dependent out-of-phase magnetic susceptibilityχ″primarily caused by the Co2+cation addition is the most dominant parameter to enhance theTAC(SLP). This clarified result strongly suggests that the development of new design and synthesis methods enabling to significantly enhance theKuby improving the crystalline anisotropy, shape anisotropy, stress (magnetoelastic) anisotropy, thermally-induced anisotropy, and exchange anisotropy is the most critical to enhance theTAC(SLP) of SPIONPs at theHAC,safe(particularly at the lowerfappl< 120 kHz) for clinically safe magnetic nanoparticle hyperthermia.

5.
Nanoscale ; 13(46): 19484-19492, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792055

RESUMEN

Magnetic nanofluid hyperthermia (MNFH) with pure superparamagnetic nanoparticles (P-SPNPs) has drawn a huge attraction for cancer treatment modality. However, the low intrinsic loss power (ILP) and attributable degraded-biocompatibility resulting from the use of a heavy dose of P-SPNP agents as well as low heat induction efficiency in biologically safe AC magnetic field (HAC,safe) are challenging for clinical applications. Here, we report an innovatively designed pseudo-single domain-SPNP (PSD-SPNP), which has the same translational advantages as that of conventional P-SPNPs but generates significantly enhanced ILP at HAC,safe. According to the analyzed results, the optimized effective relaxation time, τeff, and magnetic out-of-phase susceptibility, χ'', precisely determined by the particle size at the specific frequency of HAC,safe are the main reasons for the significantly enhanced ILP. Additionally, in vivo MNFH studies with colloidal PSD-SPNPs strongly demonstrated that it can be a promising agent for clinically safe MNFH application with high efficacy.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Magnetismo
6.
Materials (Basel) ; 14(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34576641

RESUMEN

The Wiegand wire is known to exhibit a unique feature of fast magnetization reversal in the magnetically soft region accompanied by a large Barkhausen jump. We clarified a significant difference between the magnetization reversals at the surface and at the entire cross section of a Wiegand wire. We conducted magnetization measurements based on the magneto-optical Kerr effect and applied conventional methods to determine the magnetization curves. The switching field of the magnetization reversal at the surface was greater than that at the initiation of a large Barkhausen jump. Our analysis suggests that the outer surface layer exhibits low coercivity.

7.
Materials (Basel) ; 14(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34300787

RESUMEN

The magnetic structure of Wiegand wires cannot be evaluated using conventional magnetization hysteresis curves. We analyzed the magnetization reversal of a Wiegand wire by measuring the first-order reversal curves (FORCs). A FeCoV Wiegand wire with a magnetically soft outer layer and a hard magnetic core was used in this study. The magnetization reversal of the soft and hard regions in the wire was identified in the FORC diagrams. The magnetization reversal of the dominantly irreversible process of the soft layer and the magnetic intermediate region between the soft and hard regions was clarified.

8.
Nanoscale ; 12(39): 20546, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33016979

RESUMEN

Correction for 'Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles' by Asahi Tomitaka et al., Nanoscale, 2019, 11, 6489-6496, DOI: 10.1039/C9NR00242A.

9.
Molecules ; 25(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707694

RESUMEN

In this study, we evaluated the magnetization properties of a magnetic alloy with single-crystalline cubic nanostructures, in order to clarify its magnetocrystalline anisotropy. Upon applying a specific annealing treatment to the CuNiFe base material, the precipitated magnetic particles grew into cubic granules, resulting in the formation of nanometric cubic single crystals of magnetic CuNiFe in a nonmagnetic Cu-rich matrix. The cubic nanostructures of CuNiFe were oriented along their crystallographic axis, in the <100> direction of the face-centered-cubic structure. We evaluated the static magnetization properties of the sample, which originated primarily from the CuNiFe nanocubes precipitated in the Cu-rich matrix, under an applied DC magnetic field. The magnetocrystalline anisotropy was readily observed in the magnetization curves. The <111> axis of the CuNiFe was observed to be the easy axis of magnetization. We also investigated the dynamic magnetization properties of the sample under an AC magnetic field. By subtracting the magnetic signal induced by the eddy current from the magnetization curves of the sample, we could obtain the intrinsic AC magnetization properties of the CuNiFe nanocubes.


Asunto(s)
Cobre/química , Hierro/química , Magnetismo , Nanopartículas del Metal/química , Níquel/química , Anisotropía , Cristalización
10.
Sensors (Basel) ; 20(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660120

RESUMEN

This work explores energy harvesting from rotary motion using a Wiegand sensor, which is a magnetic sensor that induces a voltage pulse when the magnetization is reversed. The main feature of the Wiegand sensor is that a pulse is generated regardless of how slowly magnetism reversal occurs. Self-sustained sensors play major roles in advancing the Internet of Things (IoT) and wireless sensor networks (WSN). In this study, we identified a linear relationship between rotational motion, magnetic field reversal, and the rotational frequency generated by the Wiegand sensor. In addition, the maximum energy per pulse and its dependence were derived analytically. A maximum energy of 130 nJ per pulse was reported for the sensor used. We developed a single-bit, self-powered digital counter that was sufficiently driven with 38 nJ of energy. In this study, single rotations were measured without the need for external power.

11.
Sci Rep ; 10(1): 10115, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572041

RESUMEN

Smart multifunctional nanoparticles with magnetic and plasmonic properties assembled on a single nanoplatform are promising for various biomedical applications. Owing to their expanding imaging and therapeutic capabilities in response to external stimuli, they have been explored for on-demand drug delivery, image-guided drug delivery, and simultaneous diagnostic and therapeutic (i.e. theranostic) applications. In this study, we engineered nanoparticles with unique morphology consisting of a superparamagnetic iron oxide core and star-shaped plasmonic shell with high-aspect-ratio gold branches. Strong magnetic and near-infrared (NIR)-responsive plasmonic properties of the engineered nanostars enabled multimodal quantitative imaging combining advantageous functions of magnetic resonance imaging (MRI), magnetic particle imaging (MPI), photoacoustic imaging (PAI), and image-guided drug delivery with a tunable drug release capacity. The model drug molecules bound to the core-shell nanostars were released upon NIR illumination due to the heat generation from the core-shell nanostars. Moreover, our simulation analysis showed that the specific design of the core-shell nanostars demonstrated a pronounced multipolar plasmon resonance, which has not been observed in previous reports. The multimodal imaging and NIR-triggered drug release capabilities of the proposed nanoplatform verify their potential for precise and controllable drug release with different applications in personalized medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas Multifuncionales/química , Animales , Liberación de Fármacos/fisiología , Fenómenos Electromagnéticos , Compuestos Férricos/química , Oro , Humanos , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas Multifuncionales/uso terapéutico , Imagen Multimodal , Fototerapia/métodos , Medicina de Precisión/métodos
12.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143461

RESUMEN

Magnetization reversal in a Wiegand wire induces a pulse voltage in the pickup coil around the wire, called the Wiegand pulse. The Wiegand sensor features the Wiegand wire and the pickup coil. The amplitude and width of the Wiegand pulse are independent of the frequency of the magnetic-field change. The pulse is generated by the Wiegand sensor, which facilitates the use of the Wiegand sensor as a power supply for equipment without batteries. In order to meet the power consumption requirements, it is necessary to maximize the energy of the pulse signal from the Wiegand sensor, without changing the external field conditions. The distributions of the magnetic field generated from the applied magnet in air and in the Wiegand wire were simulated before the experiments. Simulation predicted an increase in the magnetic flux density through the center of the Wiegand wire. This study determined that the magnetic flux density through the center of the Wiegand wire, the position of the pickup coil, and the angle between the Wiegand sensor and the magnetic induction line were the main factors that affected the energy of a Wiegand pulse. The relationship between these factors and the energy of the Wiegand pulse were obtained.

13.
Sensors (Basel) ; 19(13)2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31284638

RESUMEN

A fast magnetization reversal in a twisted FeCoV wire induces a pulse voltage in a pick-up coil wound around a wire. The Wiegand sensor is composed of this magnetic wire and the pick-up coil. As the output pulse voltage does not depend on a changing ratio of the applied magnetic field to switch the magnetization of the wire, the Wiegand sensor is used for to perform rotation and other detections. Recently, the Wiegand sensor has attracted significant attention as a power supply for battery-less operation of electric devices and for energy harvesting. In this study, we propose a concept of obtaining an intrinsic pulse voltage from the Wiegand sensor as its power source, and demonstrate its effectiveness in circuit simulation. The equivalent circuit for the Wiegand sensor is expressed by the intrinsic pulse voltage, internal resistance, and inductance of the pick-up coil. This voltage as a power source and circuit parameters are determined by MATLAB/Simulink simulation. The output voltage calculated using the equivalent circuit of the Wiegand sensor agrees with the experimentally measured results.

14.
Sensors (Basel) ; 19(12)2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31208144

RESUMEN

We previously demonstrated an efficient method of wireless power transmission using a Wiegand sensor for the application in implantable medical devices. The Wiegand sensor has an advantage in inducing sharp pulse voltage independent of the drive frequency. A down-sized receiver coil for wireless power transmission within blood vessels has been prepared, which enables medical treatment on any part of a human body. In order to develop practical applications of the Wiegand sensor as implantable medical devices, the circuit design is important. The circuit parameters in the circuit model of the Wiegand sensor must be clearly identified. However, a fast reversal of magnetization of the magnetic wire used in the Wiegand sensor, known as a large Barkhausen jump, and the induced nonlinear pulse signal make the inductance of the receiver coil time-dependent and inconsistent as conventionally considered in circuit analysis. In this study, the voltage and current responses of a wire-core coil are analyzed, and the time-dependent inductance is determined. The results showed that the inductance depends on the magnetization state of the wire, which can be negative during the fast reversal of magnetization.

16.
Nanoscale ; 11(13): 6489-6496, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30892348

RESUMEN

Multifunctional nanoparticles with a magnetic core and gold shell structures are emerging multi-modal imaging probes for disease diagnosis, image-guided therapy, and theranostic applications. Owing to their multi-functional magnetic and plasmonic properties, these nanoparticles can be used as contrast agents in multiple complementary imaging modalities. Magnetic particle imaging (MPI) is a new pre-clinical imaging system that enables real-time imaging with high sensitivity and spatial resolution by detecting the dynamic responses of nanoparticle tracers. In this study, we evaluated the dynamic magnetic properties and MPI imaging performances of core-shell nanoparticles with a magnetic core coated with a gold shell. A change in AC hysteresis loops was detected before and after the formation of the gold shell on magnetic core nanoparticles, suggesting the influence of the core-shell interfacial effect on their dynamic magnetic properties. This alteration in the dynamic responses resulted in an enhancement of the MPI imaging capacity of magnetic nanoparticles. The gold shell coating also enabled a simple and effective functionalization of the nanoparticles with a brain glioma targeting ligand. The enhanced MPI imaging capacity and effective functionality suggest the potential application of the magnetic-gold core-shell nanoparticles for MPI disease diagnostics.


Asunto(s)
Oro/química , Nanopartículas de Magnetita/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cloruros/química , Medios de Contraste/química , Compuestos Férricos/química , Humanos , Nanopartículas de Magnetita/toxicidad , Microscopía Electrónica de Transmisión , Compuestos de Sulfhidrilo/química
17.
Crit Rev Biomed Eng ; 47(6): 489-494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32421973

RESUMEN

Magnetic nanoparticles have been studied extensively for biomedical applications over the past decades. One of the promising applications of magnetic nanoparticles is hyperthermia, which refers to thermal treatment for cancer. To achieve adequate heat at target sites, it is essential to develop magnetic nanoparticles with high heating efficiency and to optimize external magnetic fields. Here, we discuss the heating mechanism of magnetic nanoparticles, the influence of the intracellular environment on magnetic behavior and heat generation, and recent advances in methods of heating efficiency assessment.


Asunto(s)
Hipertermia Inducida , Espacio Intracelular , Nanopartículas de Magnetita/química , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Fenómenos Físicos
18.
Crit Rev Biomed Eng ; 47(6): 495-505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32421974

RESUMEN

Liposomes, one of the most promising drug delivery carriers, have been extensively studied for the treatment of various diseases and have made their way to the market. Magnetic nanoparticles have been attracting great interest for diagnostic and therapeutic applications due to their unique magnetic properties. An integration of liposomes and magnetic nanoparticles gives great potential to the field of smart drug delivery systems, including magnetically guided drug delivery, image-guided drug delivery, and externally triggered controlled drug release using hyperthermia or alternating magnetic fields. In this review, we discuss the recent development of magnetoliposomes for controlled-release drug delivery systems and their potential.


Asunto(s)
Preparaciones de Acción Retardada , Liposomas , Nanopartículas de Magnetita , Células HeLa , Humanos
19.
Nanomaterials (Basel) ; 8(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891808

RESUMEN

Understanding magnetic interparticle interactions within a single hydrodynamic volume of polydispersed magnetic nanoparticles and the resulting nonlinear magnetization properties is critical for their implementation in magnetic theranostics. However, in general, the field-dependent static and dynamic magnetization measurements may only highlight polydispersity effects including magnetic moment and size distributions. Therefore, as a complement to such typical analysis of hysteretic magnetization curves, we spectroscopically examined the complex magnetization harmonics of magnetic nanoclusters either dispersed in a liquid medium or immobilized by a hydrocolloid polymer, later to emphasize the harmonic characteristics for different core sizes. In the case of superparamagnetic nanoclusters with a 4-nm primary size, particularly, we correlated the negative quadrature components of the third-harmonic susceptibility with an insignificant cluster rotation induced by the oscillatory field. Moreover, the field-dependent in-phase components appear to be frequency-independent, suggesting a weak damping effect on the moment dynamics. The characteristic of the Néel time constant further supports this argument by showing a smaller dependence on the applied dc bias field, in comparison to that of larger cores. These findings show that the complex harmonic components of the magnetization are important attributes to the interacting cores of a magnetic nanocluster.

20.
Adv Mater ; 30(6)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29266514

RESUMEN

Magnetic fluid hyperthermia has been recently considered as a Renaissance of cancer treatment modality due to its remarkably low side effects and high treatment efficacy compared to conventional chemotheraphy or radiotheraphy. However, insufficient AC induction heating power at a biological safe range of AC magnetic field (Happl ·fappl < 3.0-5.0 × 109 A m-1 s-1 ), and highly required biocompatibility of superparamagnetic nanoparticle (SPNP) hyperthermia agents are still remained as critical challenges for successful clinical hyperthermia applications. Here, newly developed highly biocompatible magnesium shallow doped γ-Fe2 O3 (Mg0.13 -γFe2 O3 ) SPNPs with exceptionally high intrinsic loss power (ILP) in a range of 14 nH m2 kg-1 , which is an ≈100 times higher than that of commercial Fe3 O4 (Feridex, ILP = 0.15 nH m2 kg-1 ) at Happl ·fappl = 1.23 × 109 A m-1 s-1 are reported. The significantly enhanced heat induction characteristics of Mg0.13 -γFe2 O3 are primarily due to the dramatically enhanced out-of-phase magnetic susceptibility and magnetically tailored AC/DC magnetic softness resulted from the systematically controlled Mg2+ cations distribution and concentrations in octahedral site Fe vacancies of γ-Fe2 O3 instead of well-known Fe3 O4 SPNPs. In vitro and in vivo magnetic hyperthermia studies using Mg0.13 -γFe2 O3 nanofluids are conducted to estimate bioavailability and biofeasibility. Mg0.13 -γFe2 O3 nanofluids show promising hyperthermia effects to completely kill the tumors.


Asunto(s)
Nanopartículas de Magnetita , Compuestos Férricos , Compuestos Ferrosos , Calor , Humanos , Hipertermia Inducida , Magnesio , Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...