Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Eur J Med Genet ; 70: 104955, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857829

RESUMEN

CCP110 (centriolar coiled coil protein 110, also known as CP110) is one of the essential proteins localized in the centrosome that plays critical roles in the regulation of the cell cycle and also in the initiation of ciliogenesis. So far, no human congenital disorders have been identified to be associated with pathogenic variants of CCP110. Mice with biallelic loss-of-function variants of Ccp110 (Ccp110-/-) are known to manifest multiple organ defects, including a small body size, polydactyly, omphalocele, congenital heart defects, cleft palate, short ribs, and a small thoracic cage, a pattern of abnormalities closely resembling that in "ciliopathies" in humans. Herein, we report a 7-month-old male infant who presented with growth failure and skeletal abnormalities, including a narrow thorax and severe brachydactyly. Trio exome analysis of the genomic DNA of the patient and his parents showed that the patient was a compound heterozygote for truncating variants of CCP110, including a frameshift variant NM_001323572.2:c.856_857del, p.(Val286Leufs*5) inherited from the father, and a nonsense variant NM_001323572.2:c.1129C>T, p.(Arg377*) inherited from the mother. The strikingly similar pattern of malformations between Ccp110-/- mice and the 7-month-old male infant reported herein carrying unequivocal truncating CCP110 variants strongly supports the contention that CCP110 is a novel disease-causative gene.


Asunto(s)
Proteínas de Ciclo Celular , Ciliopatías , Fenotipo , Humanos , Masculino , Ciliopatías/genética , Ciliopatías/patología , Lactante , Proteínas de Ciclo Celular/genética , Mutación con Pérdida de Función , Proteínas Asociadas a Microtúbulos/genética , Alelos , Proteínas del Citoesqueleto
2.
Am J Med Genet A ; 194(8): e63614, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38562108

RESUMEN

Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.


Asunto(s)
Proteínas Hedgehog , Holoprosencefalia , Hipertelorismo , Fenotipo , Humanos , Proteínas Hedgehog/genética , Femenino , Holoprosencefalia/genética , Holoprosencefalia/patología , Adolescente , Hipertelorismo/genética , Hipertelorismo/patología , Adulto , Mutación/genética
3.
Sci Rep ; 14(1): 6506, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499569

RESUMEN

Pathogenic variants in WDR45 on chromosome Xp11 cause neurodegenerative disorder beta-propeller protein-associated neurodegeneration (BPAN). Currently, there is no effective therapy for BPAN. Here we report a 17-year-old female patient with BPAN and show that antisense oligonucleotide (ASO) was effective in vitro. The patient had developmental delay and later showed extrapyramidal signs since the age of 15 years. MRI findings showed iron deposition in the globus pallidus and substantia nigra on T2 MRI. Whole genome sequencing and RNA sequencing revealed generation of pseudoexon due to inclusion of intronic sequences triggered by an intronic variant that is remote from the exon-intron junction: WDR45 (OMIM #300526) chrX(GRCh37):g.48935143G > C, (NM_007075.4:c.235 + 159C > G). We recapitulated the exonization of intron sequences by a mini-gene assay and further sought antisense oligonucleotide that induce pseudoexon skipping using our recently developed, a dual fluorescent splicing reporter system that encodes two fluorescent proteins, mCherry, a transfection marker designed to facilitate evaluation of exon skipping and split eGFP, a splicing reaction marker. The results showed that the 24-base ASO was the strongest inducer of pseudoexon skipping. Our data presented here have provided supportive evidence for in vivo preclinical studies.


Asunto(s)
Oligonucleótidos Antisentido , Empalme del ARN , Femenino , Humanos , Adolescente , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Mutación , Exones/genética , Proteínas Portadoras/genética
4.
Pediatr Nephrol ; 39(8): 2347-2349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38329589

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) can be a part of the VACTERL association, which represents the non-random combination of the following congenital anomalies: vertebral anomalies, anal anomalies, cardiac anomalies, tracheal-esophageal anomalies, kidney anomalies, and limb anomalies. VACTERL association is generally considered to be a non-genetic condition. Exceptions include a patient with a heterozygous nonsense SALL4 variant and anal stenosis, tetralogy of Fallot, sacro-vertebral fusion, and radial and thumb anomalies. SALL4 encodes a transcription factor that plays a critical role in kidney morphogenesis. Here, we report a patient with VACTERL association and a heterozygous 128-kb deletion spanning SALL4 who presented with renal hypoplasia, radial and atrio-septal defects, and patent ductus arteriosus. The present report of SALL4 deletion, in addition to a previously reported patient with VACTERL association phenotype and SALL4 nonsense mutation, further supports the notion that SALL4 haploinsufficiency can lead to VACTERL association.


Asunto(s)
Canal Anal , Esófago , Cardiopatías Congénitas , Riñón , Deformidades Congénitas de las Extremidades , Columna Vertebral , Tráquea , Factores de Transcripción , Humanos , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Tráquea/anomalías , Factores de Transcripción/genética , Riñón/anomalías , Esófago/anomalías , Canal Anal/anomalías , Columna Vertebral/anomalías , Masculino , Recién Nacido , Anomalías Múltiples/genética , Femenino , Haploinsuficiencia/genética
5.
Am J Med Genet A ; 194(7): e63575, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38407561

RESUMEN

WOREE syndrome is an early infantile epileptic encephalopathy characterized by drug-resistant seizures and severe psychomotor developmental delays. We report a case of a WWOX splice-site mutation with uniparental isodisomy. A 1-year and 7-month-old girl presented with nystagmus and epileptic seizures from early infancy, with no fixation or pursuit of vision. Physical examination revealed small deformities, such as swelling of both cheeks, folded fingers, rocking feet, and scoliosis. Brain imaging revealed slight hypoplasia of the cerebrum. Electroencephalogram showed focal paroxysmal discharges during the interictal phase of seizures. Vitamin B6 and zonisamide were administered for early infantile epileptic encephalopathy; however, the seizures were not relieved. Despite altering the type and dosage of antiepileptic drugs and ACTH therapy, the seizures were intractable. Whole-exome analysis revealed the homozygosity of WWOX(NM_016373.4):c.516+1G>A. The WWOX mRNA sequencing using peripheral blood RNA confirmed that exon 5 was homozygously deleted. Based on these results, the patient was diagnosed with WOREE syndrome at 5 months. The WWOX variant found in this study is novel and has never been reported before. WOREE syndrome being extremely rare, further case series and analyses of its pathophysiology are warranted.


Asunto(s)
Mutación , Sitios de Empalme de ARN , Espasmos Infantiles , Disomía Uniparental , Oxidorreductasa que Contiene Dominios WW , Humanos , Femenino , Lactante , Oxidorreductasa que Contiene Dominios WW/genética , Espasmos Infantiles/genética , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/patología , Disomía Uniparental/genética , Disomía Uniparental/patología , Sitios de Empalme de ARN/genética , Mutación/genética , Fenotipo , Secuenciación del Exoma , Electroencefalografía , Proteínas Supresoras de Tumor
6.
HGG Adv ; 4(4): 100238, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37710961

RESUMEN

MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.


Asunto(s)
Párpados/anomalías , Discapacidad Intelectual , Deformidades Congénitas de las Extremidades , Megalencefalia , Microcefalia , Polidactilia , Fístula Traqueoesofágica , Ratones , Animales , Humanos , Femenino , Microcefalia/genética , Mutación con Ganancia de Función , Proteína Proto-Oncogénica N-Myc/genética , Polidactilia/genética , Fenotipo , Megalencefalia/genética
7.
Cleft Palate Craniofac J ; : 10556656231188205, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37448313

RESUMEN

The recognition of syndromic forms of cleft palate is important for condition-specific management. Here, we report a patient with cleft palate, congenital heart disease, intellectual disability, and café-au-lait spots who had a deletion of chromosome 15q14. The identification of the precise breakpoints using a Nanopore-based long-read sequencer showed that the deletion spanned MEIS2 and SPRED1 loci. Cleft palate and café-au-lait spots can be ascribed to MEIS2 and SPRED1, respectively. Patients with cleft palate and café-au-lait spots should be encouraged to undergo a detailed genomic evaluation, including screening for a 15q14 deletion, to enable appropriate anticipatory medico-surgical management and genetic counseling.

8.
Eur J Med Genet ; 66(8): 104804, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369308

RESUMEN

DExH-box helicases are involved in unwinding of RNA and DNA. Among the 16 DExH-box genes, monoallelic variants of DHX16, DHX30, DHX34, and DHX37 are known to be associated with neurodevelopmental disorders. In particular, DHX30 is well established as a causative gene for neurodevelopmental disorders. Germline variants of DHX9, the closest homolog of DHX30, have not been reported until now as being associated with congenital disorders in humans, except that one de novo heterozygous variant, p.(Arg1052Gln) of the gene was identified during comprehensive screening in a patient with autism; unfortunately, the phenotypic details of this individual are unknown. Herein, we report a patients with a heterozygous de novo missense variant, p.(Gly414Arg) of DHX9 who presented with a short stature, intellectual disability, and ventricular non-compaction cardiomyopathy. The variant was located in the glycine codon of the ATP-binding site, G-C-G-K-T. To assess the pathogenicity of these variants, we generated transgenic Drosophila lines expressing human wild-type and mutant DHX9 proteins: 1) the mutant proteins showed aberrant localization both in the nucleus and the cytoplasm; 2) ectopic expression of wild-type protein in the visual system led to the rough eye phenotype, whereas expression of the mutant proteins had minimal effect; 3) overexpression of the wild-type protein in the retina led to a reduction in axonal numbers, whereas expression of the mutant proteins had a less pronounced effect. Furthermore, in a gene-editing experiment of Dhx9 G416 to R416, corresponding to p.(Gly414Arg) in humans, heterozygous mice showed a reduced body size, reduced emotionality, and cardiac conduction abnormality. In conclusion, we established that heterozygosity for a loss-of-function variant of DHX9 can lead to a new neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , Genética Humana , Discapacidad Intelectual/genética , Proteínas de Neoplasias/genética , Trastornos del Neurodesarrollo/genética , ARN/genética , ARN Helicasas
9.
Hum Genome Var ; 10(1): 18, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308473

RESUMEN

Oculofaciocardiodental syndrome is caused by variants in the BCL6 corepressor (BCOR) gene. We identified a novel heterozygous frameshift variant, NM_001123385.2(BCOR):c.2326del, that arose de novo in a Japanese girl with characteristic facial features, congenital heart disease, bilateral syndactyly of toes 2 and 3, congenital cataracts, dental abnormalities, and mild intellectual disability. Reports of BCOR variants are rare, and further case accumulation is warranted.

10.
BMC Neurol ; 23(1): 211, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264311

RESUMEN

BACKGROUND: Individuals with variants of cytochrome c oxidase assembly factor 7 (COA7), a mitochondrial functional-related gene, exhibit symptoms of spinocerebellar ataxia with axonal neuropathy before the age of 20. However, COA7 variants with parkinsonism or adult-onset type cases have not been described. CASE PRESENTATION: We report the case of a patient who developed cerebellar symptoms and slowly progressive sensory and motor neuropathy in the extremities, similar to Charcot-Marie-Tooth disease, at age 30, followed by parkinsonism at age 58. Exome analysis revealed COA7 missense mutation in homozygotes (NM_023077.2:c.17A > G, NP_075565.2: p.Asp6Gly). Dopamine transporter single-photon emission computed tomography using a 123I-Ioflupane revealed clear hypo-accumulation in the bilateral striatum. However, 123I-metaiodobenzylguanidine myocardial scintigraphy showed normal sympathetic nerve function. Levodopa administration improved parkinsonism in this patient. CONCLUSIONS: COA7 gene variants may have caused parkinsonism in this case because mitochondrial function-related genes, such as parkin and PINK1, are known causative genes in some familial Parkinson's diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos Parkinsonianos , Ataxias Espinocerebelosas , Humanos , Adulto , Persona de Mediana Edad , Mutación , Enfermedad de Charcot-Marie-Tooth/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/genética
12.
Mol Genet Metab Rep ; 35: 100968, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36974075

RESUMEN

The pyruvate dehydrogenase complex serves as the main connection between cytosolic glycolysis and the tricarboxylic acid cycle within mitochondria. An infant with pyruvate dehydrogenase complex deficiency was treated with vitamin B1 supplementation and a ketogenic diet. These dietary modifications resolved the renal tubular reabsorption, central apnea, and transfusion-dependent anemia. A concurrent metabolome analysis demonstrated the resolution of the amino aciduria and an increased total amount of substrates in the tricarboxylic acid cycle, reflecting the improved mitochondrial energetics. Glutamate was first detected in the cerebrospinal fluid, accompanied by a clinical improvement, after the ketogenic ratio was increased to 3:1; thus, glutamate levels in cerebrospinal fluid may represent a biomarker for neuronal recovery. Metabolomic analyses of body fluids are useful for monitoring therapeutic effects in infants with inborn errors of carbohydrate metabolism.

13.
Eur J Med Genet ; 66(2): 104690, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36587803

RESUMEN

The CpG island flanking the promoter region of SNRPN on chromosome 15q11.2 contains CpG sites that are completely methylated in the maternally derived allele and unmethylated in the paternally derived allele. Both unmethylated and methylated alleles are observed in normal individuals. Only the methylated allele is observed in patients with Prader-Willi syndrome, whereas only the unmethylated allele is observed in those with Angelman syndrome. Hence, detection of aberrant methylation at the differentially methylated region is fundamental to the molecular diagnosis of Prader-Willi syndrome and Angelman syndromes. Traditionally, bisulfite treatment and methylation-sensitive restriction enzyme treatment or methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) have been used. We here developed a long-read sequencing assay that can distinguish methylated and unmethylated CpG sites at 15q11.2 by the difference in current intensity generated from nanopore reads. We successfully diagnosed 4 Prader-Willi syndrome patients and 3 Angelman syndrome patients by targeting differentially methylated regions. Concurrent copy number analysis, homozygosity analysis, and structural variant analysis also allowed us to precisely delineate the underlying pathogenic mechanisms, including gross deletion, uniparental heterodisomy, uniparental isodisomy, or imprinting defect. Furthermore, we showed allele-specific methylation in imprinting-related differentially methylated regions on chromosomes 6, 7, 11, 14, and 20 in a normal individual together with 4 Prader-Willi patients and 3 Angelman syndrome patients. Hence, presently reported method is likely to be applicable to the diagnosis of imprinting disorders other than Prader-Willi syndrome and Angelman syndrome as well.


Asunto(s)
Síndrome de Angelman , Nanoporos , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Metilación de ADN , Disomía Uniparental , Cromosomas Humanos Par 15/genética , Impresión Genómica
14.
Hum Mol Genet ; 32(10): 1683-1697, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645181

RESUMEN

Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.


Asunto(s)
Encefalopatías , Proteínas de Transporte Vesicular , Animales , Ratas , Proteínas de Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Fusión de Membrana/fisiología , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neurotransmisores/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
18.
Hum Mol Genet ; 31(24): 4173-4182, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861646

RESUMEN

Collapsin response mediator protein 2 (Crmp2) is an evolutionarily well-conserved tubulin-binding cytosolic protein that plays critical roles in the formation of neural circuitry in model organisms including zebrafish and rodents. No clinical evidence that CRMP2 variants are responsible for monogenic neurogenic disorders in humans presently exists. Here, we describe two patients with de novo non-synonymous variants (S14R and R565C) of CRMP2 and intellectual disability associated with hypoplasia of the corpus callosum. We further performed various functional assays of CRMP2 variants using zebrafish and zebrafish Crmp2 (abbreviated as z-CRMP2 hereafter) and an antisense morpholino oligonucleotide [AMO]-based experimental system in which crmp2-morphant zebrafish exhibit the ectopic positioning of caudal primary (CaP) motor neurons. Whereas the co-injection of wild-type z-CRMP2 mRNA suppressed the ectopic positioning of CaP motor neurons in Crmp2-morphant zebrafish, the co-injection of R566C or S15R, z-CRMP2, which corresponds to R565C and S14R of human CRMP2, failed to rescue the ectopic positioning. Transfection experiments of zebrafish or rat Crmp2 using plasmid vectors in HeLa cells, with or without a proteasome inhibitor, demonstrated that the expression levels of mutant Crmp2 protein encoded by R565C and S14R CRMP2 variants were decreased, presumably because of increased degradation by proteasomes. When we compared CRMP2-tubulin interactions using co-immunoprecipitation and cellular localization studies, the R565C and S14R mutations weakened the interactions. These results collectively suggest that the CRMP2 variants detected in the present study consistently led to the loss-of-function of CRMP2 protein and support the notion that pathogenic variants in CRMP2 can cause intellectual disabilities in humans.


Asunto(s)
Discapacidad Intelectual , Pez Cebra , Animales , Humanos , Ratas , Células HeLa , Discapacidad Intelectual/genética , Transfección , Tubulina (Proteína)/genética , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Hum Mol Genet ; 31(22): 3846-3854, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717577

RESUMEN

CTR9 is one of five genes that form the PAF1 complex, which binds to RNA polymerase II and plays critical roles in transcriptional elongation and transcription-coupled histone modifications including histones H3K4me3 and H3K36me3. In this study, de novo CTR9 non-synonymous variants (p.(Glu15Asp) and p.(Pro25Arg)) were detected in two unrelated patients with macrocephaly, motor delay, and intellectual disability. A pull-down assay showed that the mutant CTR9 proteins had stronger affinities to the PAF1 protein than the wild-type protein. Functional analyses using zebrafish showed that the knockout of the ctr9 gene caused motor defects and enlargement of the telencephalon, which is homologous to the mammalian cerebrum. The rescue experiment, in which the human CTR9 mutants were introduced into ctr9-knockout zebrafish, failed to maintain the swimming posture of the ctr9-knockout fish, suggesting that the human CTR9 mutant proteins do not function normally in vivo. In addition, the overexpression of human CTR9 mutant mRNA caused telencephalon enlargement in zebrafish larvae, suggesting that the human CTR9 mutant proteins interfered with normal endogenous CTR9 function. We concluded that the two missense variants in CTR9 (p.(Glu15Asp) and p.(Pro25Arg)) cause a new syndrome involving macrocephaly, motor delay and intellectual disability through the loss of the normal function of CTR9 and the inhibition of the normal intrinsic CTR9 function of the contralateral allele.


Asunto(s)
Discapacidad Intelectual , Megalencefalia , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Nucleares/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Proteínas Mutantes , Genética Humana , Mamíferos/metabolismo , Fosfoproteínas , Factores de Transcripción
20.
Hum Genome Var ; 9(1): 23, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680838

RESUMEN

Here, we report a Japanese patient with Simpson-Golabi-Behmel syndrome involving a de novo 240-kb deletion including a part of GPC3. The patient showed pre- and postnatal macrosomia associated with coarse face, macrocephaly, supernumerary nipples, and cryptorchidism and characteristically presented with precocious puberty, mostly evaluated as advanced pubertal age of 15 years at the chronological age of 11.5 years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA