Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Cells ; 12(23)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067194

RESUMEN

The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/ß-catenin for MK and RBC differentiation, we activated ß-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, ß-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production.


Asunto(s)
Megacariocitos , Trombopoyesis , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos , Megacariocitos/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Trombopoyesis/fisiología
2.
Dev Cell ; 58(23): 2732-2745.e5, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37909044

RESUMEN

The extrahepatic branches of the biliary tree have glands that connect to the surface epithelium through narrow pits. The duct epithelia undergo homeostatic renewal, yet the identity and multiplicity of cells that maintain this tissue is unknown. Using marker-free and targeted clonal fate mapping in mice, we provide evidence that the extrahepatic bile duct is compartmentalized. Pit cholangiocytes of extramural glands renewed the surface epithelium, whereas basally oriented cholangiocytes maintained the gland itself. In contrast, basally positioned cholangiocytes replenished the surface epithelium in mural glands. Single-cell sequencing identified genes enriched in the base and surface epithelial populations, with trajectory analysis showing graded gene expression between these compartments. Epithelia were plastic, changing cellular identity upon fasting and refeeding. Gain of canonical Wnt signaling caused basal cell expansion, gastric chief cell marker expression, and a decrease in surface epithelial markers. Our results identify the cellular hierarchy governing extrahepatic biliary epithelial renewal.


Asunto(s)
Conductos Biliares Extrahepáticos , Sistema Biliar , Animales , Ratones , Epitelio , Células Epiteliales , Proliferación Celular
3.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092550

RESUMEN

The main cause of malignancy-related mortality is metastasis. Although metastatic progression is driven by diverse tumor-intrinsic mechanisms, there is a growing appreciation for the contribution of tumor-extrinsic elements of the tumor microenvironment, especially macrophages, which correlate with poor clinical outcomes. Macrophages consist of bone marrow-derived and tissue-resident populations. In contrast to bone marrow-derived macrophages, the transcriptional pathways that govern the pro-metastatic activities of tissue-resident macrophages (TRMs) remain less clear. Alveolar macrophages (AMs) are a TRM population with critical roles in tissue homeostasis and metastasis. Wnt/ß-catenin signaling is a hallmark of cancer and has been identified as a pathologic regulator of AMs in infection. We tested the hypothesis that ß-catenin expression in AMs enhances metastasis in solid tumor models. Using a genetic ß-catenin gain-of-function approach, we demonstrated that (a) enhanced ß-catenin in AMs heightened lung metastasis; (b) ß-catenin activity in AMs drove a dysregulated inflammatory program strongly associated with Tnf expression; and (c) localized TNF-α blockade abrogated this metastatic outcome. Last, ß-catenin gene CTNNB1 and TNF expression levels were positively correlated in AMs of patients with lung cancer. Overall, our findings revealed a Wnt/ß-catenin/TNF-α pro-metastatic axis in AMs with potential therapeutic implications against tumors refractory to the antineoplastic actions of TNF-α.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pulmonares/patología , Vía de Señalización Wnt , Microambiente Tumoral
4.
Bioact Mater ; 21: 110-128, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36093329

RESUMEN

Cell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/ß-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers ß3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application.

5.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798383

RESUMEN

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Neoplasias Encefálicas/patología , Ciclo Celular/genética , Neoplasias Cerebelosas/genética , Cilios/genética , Humanos , Meduloblastoma/genética , Ratones
6.
Nat Commun ; 13(1): 1500, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314700

RESUMEN

Although the mammalian intestinal epithelium manifests robust regenerative capacity after various cytotoxic injuries, the underlying mechanism has remained unclear. Here we identify the cyclin-dependent kinase inhibitor p57 as a specific marker for a quiescent cell population located around the +4 position of intestinal crypts. Lineage tracing reveals that the p57+ cells serve as enteroendocrine/tuft cell precursors under normal conditions but dedifferentiate and act as facultative stem cells to support regeneration after injury. Single-cell transcriptomics analysis shows that the p57+ cells undergo a dynamic reprogramming process after injury that is characterized by fetal-like conversion and metaplasia-like transformation. Population-level analysis also detects such spatiotemporal reprogramming widely in other differentiated cell types. In intestinal adenoma, p57+ cells manifest homeostatic stem cell activity, in the context of constitutively activated spatiotemporal reprogramming. Our results highlight a pronounced plasticity of the intestinal epithelium that supports maintenance of tissue integrity in normal and neoplastic contexts.


Asunto(s)
Mucosa Intestinal , Neoplasias , Animales , Diferenciación Celular , Mucosa Intestinal/metabolismo , Intestinos , Mamíferos , Neoplasias/metabolismo , Células Madre/metabolismo
7.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35042581

RESUMEN

In the thymus, the thymic epithelium provides a microenvironment essential for the development of functionally competent and self-tolerant T cells. Previous findings showed that modulation of Wnt/ß-catenin signaling in mouse thymic epithelial cells (TECs) disrupts embryonic thymus organogenesis. However, the role of ß-catenin in TECs for postnatal T-cell development remains to be elucidated. Here, we analyzed gain-of-function (GOF) and loss-of-function (LOF) of ß-catenin highly specific in mouse TECs. We found that GOF of ß-catenin in TECs results in severe thymic dysplasia and T-cell deficiency beginning from the embryonic period. By contrast, LOF of ß-catenin in TECs reduces the number of cortical TECs and thymocytes modestly and only postnatally. These results indicate that fine-tuning of ß-catenin expression within a permissive range is required for TECs to generate an optimal microenvironment to support postnatal T-cell development.


Asunto(s)
Células Epiteliales/metabolismo , Linfocitos T/metabolismo , Timo/metabolismo , beta Catenina/metabolismo , Animales , Femenino , Ratones
8.
FASEB J ; 35(11): e21957, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606641

RESUMEN

The Wnt signaling antagonist, sclerostin, is a potent suppressor of bone acquisition that also mediates endocrine communication between bone and adipose. As a result, Sost-/- mice exhibit dramatic increases in bone formation but marked decreases in visceral and subcutaneous adipose that are secondary to alterations in lipid synthesis and utilization. While interrogating the mechanism by which sclerostin influences adipocyte metabolism, we observed paradoxical increases in the adipogenic potential and numbers of CD45- :Sca1+ :PDGFRα+ adipoprogenitors in the stromal vascular compartment of fat pads isolated from male Sost-/- mice. Lineage tracing studies indicated that sclerostin deficiency blocks the differentiation of PDGFRα+ adipoprogenitors to mature adipocytes in association with increased Wnt/ß-catenin signaling. Importantly, osteoblast/osteocyte-specific Sost gene deletion mirrors the accumulation of PDGFRα+ adipoprogenitors, reduction in fat mass, and improved glucose metabolism evident in Sost-/- mice. These data indicate that bone-derived sclerostin regulates multiple facets of adipocyte physiology ranging from progenitor cell commitment to anabolic metabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos/metabolismo , Adipogénesis/genética , Huesos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Células Cultivadas , Técnicas de Inactivación de Genes/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Osteocitos/metabolismo , Osteogénesis/genética
9.
Nat Commun ; 11(1): 1680, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245949

RESUMEN

Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of ß-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas ß-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in ß-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.


Asunto(s)
Uniones Adherentes/metabolismo , Morfogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Zona Glomerular/crecimiento & desarrollo , beta Catenina/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/ultraestructura , Neoplasias de las Glándulas Suprarrenales/cirugía , Animales , Animales Recién Nacidos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Zona Glomerular/citología , Zona Glomerular/metabolismo , Zona Glomerular/ultraestructura , beta Catenina/genética
10.
Cell Stem Cell ; 24(5): 753-768.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982770

RESUMEN

Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/ß-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/ß-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor ß (TGFß) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/ß-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.


Asunto(s)
Células Epiteliales/fisiología , Próstata/citología , Células Madre/fisiología , Células del Estroma/fisiología , Proteína Wnt-5a/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Receptor Cross-Talk , Nicho de Células Madre , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
11.
Mol Neurobiol ; 56(1): 553-566, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29737454

RESUMEN

ß-catenin (key mediator in the Wnt signaling pathway) contributes to the pathophysiology of mood disorders, associated to neurogenesis and neuroplasticity. Decreased ß-catenin protein levels have been observed in the hippocampus and prefrontal cortex of depressed subjects. Additionally, the antidepressants exert, at least in part, their neurogenic effects by increasing ß-catenin levels in the subgranular zone of the hippocampus. To further understand the role of ß-catenin in depression and anxiety, we generated two conditional transgenic mice in which ß-catenin was either inactivated or stabilized in cells expressing CreERT under the control of the astrocyte-specific glutamate transporter (GLAST) promoter inducible by tamoxifen, which presents high expression levels on the subgranular zone of the hippocampus. Here, we show that ß-catenin inactivation in GLAST-expressing cells enhanced anxious/depressive-like responses. These behavioral changes were associated with impaired hippocampal proliferation and markers of immature neurons as doublecortin. On the other hand, ß-catenin stabilization induced an anxiolytic-like effect in the novelty suppressed feeding test and tended to ameliorate depressive-related behaviors. In these mice, the control over the Wnt/ß-catenin pathway seems to be tighter as evidenced by the lack of changes in some proliferation markers. Moreover, animals with stabilized ß-catenin showed resilience to some anxious/depressive manifestations when subjected to the corticosterone model of depression. Our findings demonstrate that ß-catenin present in GLAST-expressing cells plays a critical role in the development of anxious/depressive-like behaviors and resilience, which parallels its regulatory function on hippocampal proliferation. Further studies need to be done to clarify the importance of these changes in other brain areas also implicated in the neurobiology of anxiety and depressive disorders.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal , Depresión/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Hipocampo/patología , beta Catenina/metabolismo , Animales , Ansiedad/complicaciones , Conducta Animal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Corticosterona/administración & dosificación , Corticosterona/farmacología , Giro Dentado/patología , Depresión/complicaciones , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Estabilidad Proteica/efectos de los fármacos , Factores de Transcripción SOXB1/metabolismo
12.
Kidney Int ; 93(6): 1367-1383, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29605095

RESUMEN

Imbalance of Wnt/ß-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/ß-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/ß-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized ß-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1ß, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/ß-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.


Asunto(s)
Mediadores de Inflamación/metabolismo , Túbulos Renales/metabolismo , Macrófagos/metabolismo , Nefritis/metabolismo , Proteinuria/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefrectomía , Nefritis/genética , Nefritis/patología , Nefritis/fisiopatología , Proteinuria/genética , Proteinuria/patología , Proteinuria/fisiopatología , Albúmina Sérica Bovina , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt/genética , beta Catenina/genética
13.
Oncotarget ; 9(13): 11243-11257, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29541410

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling plays a crucial role in embryogenesis, tissue homeostasis, metabolism and malignant transformation of different organs including the liver. Continuous ß-catenin signaling due to somatic mutations in exon 3 of the Ctnnb1 gene is associated with different liver diseases including cancer and cholestasis. RESULTS: Expression of a degradation resistant form of ß-catenin in hepatocytes resulted in 100% mortality within 31 days after birth. Ctnnb1CAhep mice were characterized by reduced body weight, significantly enlarged livers with hepatocellular fat accumulation around central veins and increased hepatic triglyceride content. Proteomics analysis using whole liver tissue revealed significant deregulation of proteins involved in fat, glucose and mitochondrial energy metabolism, which was also reflected in morphological anomalies of hepatocellular mitochondria. Key enzymes involved in transport and synthesis of fatty acids and cholesterol were significantly deregulated in livers of Ctnnb1CAhep mice. Furthermore, carbohydrate metabolism was substantially disturbed in mutant mice. CONCLUSION: Continuous ß-catenin signaling in hepatocytes results in premature death due to severe disturbances of liver associated metabolic pathways and mitochondrial dysfunction. METHODS: To investigate the influence of permanent ß-catenin signaling on liver biology we analyzed mice with hepatocyte specific expression of a dominant stable form of ß-catenin (Ctnnb1CAhep ) and their WT littermates by serum biochemistry, histology, electron microscopy, mRNA profiling and proteomic analysis of the liver.

14.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217753

RESUMEN

Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Corazón/embriología , Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Embrión de Mamíferos/citología , Células Endoteliales/citología , Humanos , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/citología , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
15.
Dev Cell ; 43(6): 673-688.e5, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29103956

RESUMEN

Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Meduloblastoma/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular/fisiología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Factores Eucarióticos de Iniciación , Proteínas Hedgehog/genética , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
16.
Cancer Discov ; 7(5): 522-538, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28202625

RESUMEN

Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E2 (PGE2) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans.Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 443.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Dinoprostona/metabolismo , Microbioma Gastrointestinal/fisiología , Neoplasias Hepáticas/metabolismo , Obesidad/complicaciones , Animales , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/microbiología , Femenino , Humanos , Lipopolisacáridos/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/microbiología , Masculino , Ratones Endogámicos C57BL , Obesidad/microbiología , Ácidos Teicoicos/metabolismo , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología
17.
Clin Cancer Res ; 23(3): 833-844, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27492974

RESUMEN

PURPOSE: We have reported loss of SMAD4 promotes expression of CCL15 from colorectal cancer to recruit CCR1+ myeloid cells through the CCL15-CCR1 axis, which contributes to invasion and liver metastasis. However, the molecular mechanism of lung metastasis is yet to be elucidated. Our purpose is to determine whether similar mechanism is involved in the lung metastasis of colorectal cancer. EXPERIMENTAL DESIGN: In a mouse model, we examined whether SMAD4 could affect the metastatic activity of colorectal cancer cells to the lung through the CCL15-CCR1 axis. We immunohistochemically analyzed expression of SMAD4, CCL15, and CCR1 with 107 clinical specimens of colorectal cancer lung metastases. We also characterized the CCR1+ myeloid cells using several cell-type-specific markers. RESULTS: In a mouse model, CCL15 secreted from SMAD4-deficient colorectal cancer cells recruited CCR1+ cells, promoting their metastatic activities to the lung. Immunohistochemical analysis of lung metastases from colorectal cancer patients revealed that CCL15 expression was significantly correlated with loss of SMAD4, and that CCL15-positive metastases recruited approximately 1.9 times more numbers of CCR1+ cells than CCL15-negative metastases. Importantly, patients with CCL15-positive metastases showed a significantly shorter relapse-free survival (RFS) than those with CCL15-negative metastases, and multivariate analysis indicated that CCL15 expression was an independent predictor of shorter RFS. Immunofluorescent staining showed that most CCR1+ cells around lung metastases were tumor-associated neutrophil, although a minor fraction was granulocytic myeloid-derived suppressor cell. CONCLUSIONS: CCL15-CCR1 axis may be a therapeutic target to prevent colorectal cancer lung metastasis. CCL15 can be a biomarker indicating poor prognosis of colorectal cancer patients with lung metastases. Clin Cancer Res; 23(3); 833-44. ©2016 AACR.


Asunto(s)
Quimiocinas CC/fisiología , Neoplasias Colorrectales/patología , Neoplasias Pulmonares/secundario , Proteínas Inflamatorias de Macrófagos/fisiología , Proteínas de Neoplasias/deficiencia , Infiltración Neutrófila , Receptores CCR1/fisiología , Proteína Smad4/deficiencia , Animales , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CC/biosíntesis , Quimiocinas CC/genética , Neoplasias Colorrectales/metabolismo , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Xenoinjertos , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Proteínas Inflamatorias de Macrófagos/biosíntesis , Proteínas Inflamatorias de Macrófagos/genética , Ratones , Ratones Desnudos , Ratones SCID , Células Mieloides/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Pronóstico , Modelos de Riesgos Proporcionales , Proteína Smad4/fisiología
18.
Oncotarget ; 7(52): 86985-86998, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27895309

RESUMEN

BACKGROUND: The Wnt/ß-catenin signaling pathway plays a crucial role in embryonic development, tissue homeostasis, wound healing and malignant transformation in different organs including the liver. The consequences of continuous ß-catenin signaling in hepatocytes remain elusive. RESULTS: Livers of Ctnnb1CA hep mice were characterized by disturbed liver architecture, proliferating cholangiocytes and biliary type of fibrosis. Serum ALT and bile acid levels were significantly increased in Ctnnb1CA hep mice. The primary bile acid synthesis enzyme Cyp7a1 was increased whereas Cyp27 and Cyp8b1 were reduced in Ctnnb1CA hep mice. Expression of compensatory bile acid transporters including Abcb1, Abcb4, Abcc2 and Abcc4 were significantly increased in Ctnnb1CA hep mice while Ntcp was reduced. Accompanying changes of bile acid transporters favoring excretion of bile acids were observed in intestine and kidneys of Ctnnb1CA hep mice. Additionally, disturbed bile acid regulation through the FXR-FGF15-FGFR4 pathway was observed in mice with activated ß-catenin. MATERIALS AND METHODS: Mice with a loxP-flanked exon 3 of the Ctnnb1 gene were crossed to Albumin-Cre mice to obtain mice with hepatocyte-specific expression of a dominant stable form of ß-catenin (Ctnnb1CA hep mice). Ctnnb1CA hep mice were analyzed by histology, serum biochemistry and mRNA profiling. CONCLUSIONS: Expression of a dominant stable form of ß-catenin in hepatocytes results in severe cholestasis and biliary type fibrosis.


Asunto(s)
Colestasis/etiología , Hepatocitos/metabolismo , beta Catenina/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colesterol 7-alfa-Hidroxilasa/genética , Cirrosis Hepática Biliar/etiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
19.
Dev Biol ; 412(2): 234-49, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26934381

RESUMEN

Organ shape and size are important determinants of their physiological functions. Epithelial tubes are anlagen of many complex organs. How these tubes acquire their complex shape and size is a fundamental question in biology. In male mice, the Wolffian duct (WD; postnatally known as epididymis) undergoes an astonishing transformation, where a straight tube only a few millimetres long elongates to over 1000 times its original length and fits into a very small space, due to extensive coiling of epithelium, to perform the highly specialized function of sperm maturation. Defective coiling disrupts sperm maturation and leads to male infertility. Recent work has shown that epithelial cell proliferation is a major driver of WD coiling. Still, very little is known about the molecular signals involved in this process. Testicular androgens are known regulators of WD development. However, epithelial androgen receptor signalling is dispensable for WD coiling. In this study, we have shown that Wnt signalling is highly active in the entire WD epithelium during its coiling, and is limited to only a few segments of the epididymis in later life. Pharmacological and genetic suppression of Wnt signalling inhibited WD coiling by decreasing cell proliferation and promoting apoptosis. Comparative gene expression analysis identified Fibroblast growth factor 7 (Fgf7) as a prime Wnt target gene involved in WD coiling and in vitro treatment with Fgf7 protein increased coiling of WDs. In summary, our work has established that epithelial canonical Wnt signalling is a critical regulator of WD coiling and its precise regulation is essential for WD/epididymal differentiation.


Asunto(s)
Epidídimo/metabolismo , Epitelio/metabolismo , Vía de Señalización Wnt/genética , Conductos Mesonéfricos/metabolismo , Animales , Epidídimo/embriología , Epitelio/embriología , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Conductos Mesonéfricos/embriología , beta Catenina/genética , beta Catenina/metabolismo
20.
Genes Dev ; 29(14): 1493-506, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193883

RESUMEN

Mutations in Adenomatous polyposis coli (APC) underlie familial adenomatous polyposis (FAP), an inherited cancer syndrome characterized by the widespread development of colorectal polyps. APC is best known as a scaffold protein in the ß-catenin destruction complex, whose activity is antagonized by canonical Wnt signaling. Whether other effector pathways mediate APC's tumor suppressor function is less clear. Here we report that activation of YAP, the downstream effector of the Hippo signaling pathway, is a general hallmark of tubular adenomas from FAP patients. We show that APC functions as a scaffold protein that facilitates the Hippo kinase cascade by interacting with Sav1 and Lats1. Consistent with the molecular link between APC and the Hippo signaling pathway, genetic analysis reveals that YAP is absolutely required for the development of APC-deficient adenomas. These findings establish Hippo-YAP signaling as a critical effector pathway downstream from APC, independent from its involvement in the ß-catenin destruction complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/fisiopatología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Adenoma/enzimología , Adenoma/fisiopatología , Poliposis Adenomatosa del Colon/enzimología , Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas de Ciclo Celular , Células Cultivadas , Vía de Señalización Hippo , Humanos , Intestinos/fisiopatología , Ratones , Factores de Transcripción , Proteínas Señalizadoras YAP , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA