Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977827

RESUMEN

Prefrontal cortex (PFC) intrahemispheric activity and the interhemispheric connection have a significant impact on neuropsychiatric disorder pathology. This study aimed to generate a functional map of FC intrahemispheric and interhemispheric connections. Functional dissection of mouse PFCs was performed using the voltage-sensitive dye (VSD) imaging method with high speed (1 ms/frame), high resolution (256 × 256 pixels), and a large field of view (∼10 mm). Acute serial 350 µm slices were prepared from the bregma covering the PFC and numbered 1-5 based on their distance from the bregma (i.e., 1.70, 1.34, 0.98, 0.62, and 0.26 mm) with reference to the Mouse Brain Atlas (Paxinos and Franklin, 2008). The neural response to electrical stimulation was measured at nine sites and then averaged, and a functional map of the propagation patterns was created. Intracortical propagation was observed in slices 3-5, encompassing the anterior cingulate cortex (ACC) and corpus callosum (CC). The activity reached area 33 of the ACC. Direct white matter stimulation activated area 33 in both hemispheres. Similar findings were obtained via DiI staining of the CC. Imaging analysis revealed directional biases in neural signals traveling within the ACC, whereby the signal transmission speed and probability varied based on the signal direction. Specifically, the spread of neural signals from cg2 to cg1 was stronger than that from cingulate cortex area 1(cg1) to cingulate cortex area 2(cg2), which has implications for interhemispheric functional connections. These findings highlight the importance of understanding the PFC functional anatomy in evaluating neuromodulators like serotonin and dopamine, as well as other factors related to neuropsychiatric diseases.


Asunto(s)
Cuerpo Calloso , Imagen de Colorante Sensible al Voltaje , Ratones , Animales , Cuerpo Calloso/fisiología , Giro del Cíngulo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Serotonina , Vías Nerviosas/fisiología
2.
Front Cell Neurosci ; 17: 1217368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680865

RESUMEN

Non-clinical toxicology is a major cause of drug candidate attrition during development. In particular, drug-induced seizures are the most common finding in central nervous system (CNS) toxicity. Current safety pharmacology tests for assessing CNS functions are often inadequate in detecting seizure-inducing compounds early in drug development, leading to significant delays. This paper presents an in vitro seizure liability assay using voltage-sensitive dye (VSD) imaging techniques in hippocampal brain slices, offering a powerful alternative to traditional electrophysiological methods. Hippocampal slices were isolated from mice, and VSD optical responses evoked by stimulating the Schaffer collateral pathway were recorded and analyzed in the stratum radiatum (SR) and stratum pyramidale (SP). VSDs allow for the comprehensive visualization of neuronal action potentials and postsynaptic potentials on a millisecond timescale. By employing this approach, we investigated the in vitro drug-induced seizure liability of representative pro-convulsant compounds. Picrotoxin (PiTX; 1-100 µM), gabazine (GZ; 0.1-10 µM), and 4-aminopyridine (4AP; 10-100 µM) exhibited seizure-like responses in the hippocampus, but pilocarpine hydrochloride (Pilo; 10-100 µM) did not. Our findings demonstrate the potential of VSD-based assays in identifying seizurogenic compounds during early drug discovery, thereby reducing delays in drug development and providing insights into the mechanisms underlying seizure induction and the associated risks of pro-convulsant compounds.

3.
J Neuroinflammation ; 19(1): 195, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906621

RESUMEN

BACKGROUND: Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS: Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS: Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION: These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno del Espectro Autista/inducido químicamente , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Maraviroc/uso terapéutico , Maraviroc/toxicidad , Ratones , Minociclina/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Receptores CCR5/genética , Ácido Valproico/toxicidad
4.
J Vis Exp ; (148)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31282882

RESUMEN

Wide-field single photon voltage-sensitive dye (VSD) imaging of brain slice preparations is a useful tool to assess the functional connectivity in neural circuits. Due to the fractional change in the light signal, it has been difficult to use this method as a quantitative assay. This article describes special optics and slice handling systems, which render this technique stable and reliable. The present article demonstrates the slice handling, staining, and recording of the VSD-stained hippocampal slices in detail. The system maintains physiological conditions for a long time, with good staining, and prevents mechanical movements of the slice during the recordings. Moreover, it enables staining of slices with a small amount of the dye. The optics achieve high numerical aperture at low magnification, which allows recording of the VSD signal at the maximum frame rate of 10 kHz, with 100 pixel x 100-pixel spatial resolution. Due to the high frame rate and spatial resolution, this technique allows application of the post-recording filters that provide sufficient signal-to-noise ratio to assess the changes in neural circuits.


Asunto(s)
Hipocampo/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo , Neuronas/fisiología , Fotones , Relación Señal-Ruido
5.
Front Cell Neurosci ; 12: 389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405360

RESUMEN

Activity-dependent changes in the input-output (I-O) relationship of a neural circuit are central in the learning and memory function of the brain. To understand circuit-wide adjustments, optical imaging techniques to probe the membrane potential at every component of neurons, such as dendrites, axons and somas, in the circuit are essential. We have been developing fast voltage-sensitive dye (VSD) imaging methods for quantitative measurements, especially for single-photon wide-field optical imaging. The long-term continuous measurements needed to evaluate circuit-wide modifications require stable and quantitative long-term recordings. Here, we show that VSD imaging (VSDI) can be used to record changes in circuit activity in association with theta-burst stimulation (TBS)-induced long-term potentiation (LTP) of synaptic strength in the CA1 area. Our optics, together with the fast imaging system, enabled us to measure neuronal signals from the entire CA1 area at a maximum frame speed of 0.1 ms/frame every 60 s for over 12 h. We also introduced a method to evaluate circuit activity changes by mapping the variation in recordings from the CA1 area to coordinates defined by the morphology of CA1 pyramidal cells. The results clearly showed two types of spatial heterogeneity in LTP induction. The first heterogeneity is that LTP increased with distance from the stimulation site. The second heterogeneity is that LTP is higher in the stratum pyramidale (SP)-oriens region than in the stratum radiatum (SR). We also showed that the pattern of the heterogeneity changed according to the induction protocol, such as induction by TBS or high-frequency stimulation (HFS). We further demonstrated that part of the heterogeneity depends on the I-O response of the circuit elements. The results show the usefulness of VSDI in probing the function of hippocampal circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...