Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Purif ; 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104535

RESUMEN

BACKGROUND: The FDA authorized the emergency use of enhanced hemoadsorption with oXiris in critically ill adult COVID patients with respiratory failure or severe disease to reduce inflammation. In this study, we evaluated critically ill adult COVID patients with acute kidney injury (AKI) who were exposed vs. not exposed to enhanced hemoadsorption with oXiris during continuous renal replacement therapy (CRRT). METHODS: Retrospective cohort study of critically ill adult COVID patients with AKI requiring CRRT. Exposure to oXiris was defined as receiving oXiris for >12 cumulative hours and more than one-third of the time within the first 72 hours of CRRT. Study outcomes included filter-specific performance metrics and clinical outcomes such as ventilator requirement, mortality, and dialysis dependence. Inverse probability treatment weighting was used to balance potential confounders in weighted regression models. RESULTS: 14,043 hours of CRRT corresponding to 85 critically ill adult patients were analyzed. Among these, 2,736 hours corresponded to oXiris exposure (n=25 patients) and 11,307 hours to a standard CRRT filter (n=60 patients). Transmembrane pressures (TMP) increased rapidly and were overall higher with oXiris vs. standard filter, but filter life (median of 36.3 vs. 33.1 hours, p=0.913, respectively) and filter/clotting alarms remained similar in both groups. In adjusted models, oXiris exposure was not independently associated with the composite of hospital mortality and dialysis dependence at discharge (OR 2.13, 95% CI 0.98-4.82, p=0.06) but it was associated with fewer ventilator (ß = -15.02, 95% CI -29.23 to -0.82, p=0.04) and ICU days (ß = -14.74, -28.54 to -0.95, p=0.04) in survivors. DISCUSSION/CONCLUSION: In critically ill adult COVID patients with AKI requiring CRRT, oXiris filters exhibited higher levels of TMP when compared to a standard CRRT filter, but no differences in filter life and filter/clotting alarm profiles were observed. The use of oXiris was not associated with improvement in clinical outcomes such as hospital mortality or dialysis dependence at discharge.

2.
Proc Natl Acad Sci U S A ; 120(46): e2307275120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931094

RESUMEN

Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.


Asunto(s)
Locus Coeruleus , Optogenética , Ratas , Animales , Locus Coeruleus/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Norepinefrina/farmacología , Potenciación a Largo Plazo/fisiología
3.
Crit Care ; 27(1): 341, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37661277

RESUMEN

Approximately 20% of patients with acute brain injury (ABI) also experience acute kidney injury (AKI), which worsens their outcomes. The metabolic and inflammatory changes associated with AKI likely contribute to prolonged brain injury and edema. As a result, recognizing its presence is important for effectively managing ABI and its sequelae. This review discusses the occurrence and effects of AKI in critically ill adults with neurological conditions, outlines potential mechanisms connecting AKI and ABI progression, and highlights AKI management principles. Tailored approaches include optimizing blood pressure, managing intracranial pressure, adjusting medication dosages, and assessing the type of administered fluids. Preventive measures include avoiding nephrotoxic drugs, improving hemodynamic and fluid balance, and addressing coexisting AKI syndromes. ABI patients undergoing renal replacement therapy (RRT) are more susceptible to neurological complications. RRT can negatively impact cerebral blood flow, intracranial pressure, and brain tissue oxygenation, with effects tied to specific RRT methods. Continuous RRT is favored for better hemodynamic stability and lower risk of dialysis disequilibrium syndrome. Potential RRT modifications for ABI patients include adjusted dialysate and blood flow rates, osmotherapy, and alternate anticoagulation methods. Future research should explore whether these strategies enhance outcomes and if using novel AKI biomarkers can mitigate AKI-related complications in ABI patients.


Asunto(s)
Lesión Renal Aguda , Lesiones Encefálicas , Terapia de Reemplazo Renal Continuo , Adulto , Humanos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/terapia , Encéfalo , Presión Sanguínea
4.
Mol Brain ; 16(1): 69, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749596

RESUMEN

Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.


Asunto(s)
Proteínas Activadoras de GTPasa , Consolidación de la Memoria , Animales , Ratones , Ratas , Dopamina , Ácido Glutámico , Hipocampo , Locus Coeruleus , Receptores AMPA
5.
Neurochem Int ; 165: 105517, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36913980

RESUMEN

NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Transducción de Señal , Animales , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
6.
Hippocampus ; 33(6): 769-786, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798045

RESUMEN

The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a "replay" of an animal's past trajectories. A novel spatial navigation task recently revealed that such "replay" sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such "prospective replay" sequences may play a causal role in goal-directed navigation. In the present study, we query this putative causal role in finding only minimal effects of muscimol-induced inactivation of the dorsal and intermediate hippocampus on the same spatial navigation task. The concentration of muscimol used demonstrably inhibited hippocampal cell firing in vivo and caused a severe deficit in a hippocampal-dependent "episodic-like" spatial memory task in a watermaze. These findings call into question whether "prospective replay" of an imminent and direct path is actually necessary for its execution in certain navigational tasks.


Asunto(s)
Objetivos , Navegación Espacial , Animales , Muscimol/farmacología , Estudios Prospectivos , Navegación Espacial/fisiología , Hipocampo/fisiología , Mamíferos
8.
9.
Mol Brain ; 15(1): 24, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331310

RESUMEN

Alterations in long-range functional connectivity between distinct brain regions are thought to contribute to the encoding of memory. However, little is known about how the activation of an existing network of neocortical and hippocampal regions might support the assimilation of relevant new information into the preexisting knowledge structure or 'schema'. Using functional mapping for expression of plasticity-related immediate early gene products, we sought to identify the long-range functional network of paired-associate memory, and the encoding and assimilation of relevant new paired-associates. Correlational and clustering analyses for expression of immediate early gene products revealed that midline neocortical-hippocampal connectivity is strongly associated with successful memory encoding of new paired-associates against the backdrop of the schema, compared to both (1) unsuccessful memory encoding of new paired-associates that are not relevant to the schema, and (2) the mere retrieval of the previously learned schema. These findings suggest that the certain midline neocortical and hippocampal networks support the assimilation of newly encoded associative memories into a relevant schema.


Asunto(s)
Encéfalo , Hipocampo , Encéfalo/fisiología , Corteza Cerebral , Hipocampo/fisiología , Aprendizaje , Imagen por Resonancia Magnética
10.
Mol Brain ; 14(1): 173, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872607

RESUMEN

Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = - 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.


Asunto(s)
Técnicas Biosensibles , Dopamina , Animales , Dopamina/metabolismo , Células HeLa , Humanos , Neuronas/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología
12.
J Vis Exp ; (171)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34028445

RESUMEN

Object place recognition is a prominent method used to investigate spatial memory in rodents. This object place recognition memory forms the basis of the object location task. This paper provides an extensive protocol to guide the establishment of an object location task with the option of up to four repetitions using the same cohort of rats. Both weak and strong encoding protocols can be used to study short- and long-term spatial memories of varying strength and to enable the implementation of relevant memory-inhibiting or -enhancing manipulations. In addition, repetition of the test with the counterbalancing presented here allows the combination of results from two or more tests for within-subject comparison to reduce variability between rats. This method helps to increase statistical power and is strongly recommended, particularly when running experiments that produce high variation in individual behavior. Finally, implementation of the repeated object location task increases the efficiency of studies that involve surgical procedures by saving time and labor.


Asunto(s)
Proyectos de Investigación , Memoria Espacial , Animales , Ratas , Percepción Visual
13.
Eur J Neurosci ; 54(8): 6826-6849, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32649022

RESUMEN

Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.


Asunto(s)
Consolidación de la Memoria , Dopamina , Hipocampo , Memoria , Plasticidad Neuronal
14.
PLoS One ; 15(2): e0229288, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078638

RESUMEN

The GluD1 gene is associated with susceptibility for schizophrenia, autism, depression, and bipolar disorder. However, the function of GluD1 and how it is involved in these conditions remain elusive. In this study, we generated a Grid1 gene-knockout (GluD1-KO) mouse line with a pure C57BL/6N genetic background and performed several behavioral analyses. Compared to a control group, GluD1-KO mice showed no significant anxiety-related behavioral differences, evaluated using behavior in an open field, elevated plus maze, a light-dark transition test, the resident-intruder test of aggression and sensorimotor gating evaluated by the prepulse inhibition test. However, GluD1-KO mice showed (1) higher locomotor activity in the open field, (2) decreased sociability and social novelty preference in the three-chambered social interaction test, (3) impaired memory in contextual, but not cued fear conditioning tests, and (4) enhanced depressive-like behavior in a forced swim test. Pharmacological studies revealed that enhanced depressive-like behavior in GluD1-KO mice was restored by the serotonin reuptake inhibitors imipramine and fluoxetine, but not the norepinephrine transporter inhibitor desipramine. In addition, biochemical analysis revealed no significant difference in protein expression levels, such as other glutamate receptors in the synaptosome and postsynaptic densities prepared from the frontal cortex and the hippocampus. These results suggest that GluD1 plays critical roles in fear memory, sociability, and depressive-like behavior.


Asunto(s)
Ansiedad/patología , Depresión/patología , Miedo , Glutamato Deshidrogenasa/fisiología , Relaciones Interpersonales , Trastornos de la Memoria/patología , Trastorno de la Conducta Social/patología , Animales , Ansiedad/etiología , Conducta Animal , Depresión/etiología , Masculino , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Trastorno de la Conducta Social/etiología
15.
Eur J Neurosci ; 51(7): 1539-1558, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31944427

RESUMEN

A key issue in neurobiological studies of episodic-like memory is the geometric frame of reference in which memory traces of experience are stored. Assumptions are sometimes made that specific protocols favour either allocentric (map-like) or egocentric (body-centred) representations. There are, however, grounds for suspecting substantial ambiguity about coding strategy, including the necessity to use both frames of reference occasionally, but tests of memory representation are not routinely conducted. Using rats trained to find and dig up food in sandwells at a particular place in an event arena (episodic-like 'action-where' encoding), we show that a protocol previously thought to foster allocentric encoding is ambiguous but more predisposed towards egocentric encoding. Two changes in training protocol were examined with a view to promoting preferential allocentric encoding-one in which multiple start locations were used within a session as well as between sessions; and another that deployed a stable home-base to which the animals had to carry food reward. Only the stable home-base protocol led to excellent choice performance which rigorous analyses revealed to be blocked by occluding extra-arena cues when this was done after encoding but before recall. The implications of these findings for studies of episodic-like memory are that the representational framework of memory at the start of a recall trial will likely include a path direction in the egocentric case but path destination in the allocentric protocol. This difference should be observable in single-unit recording or calcium-imaging studies of spatially-tuned cells.


Asunto(s)
Recuerdo Mental , Memoria Espacial , Animales , Señales (Psicología) , Humanos , Ratas , Recompensa , Percepción Espacial
16.
Trends Neurosci ; 42(2): 102-114, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455050

RESUMEN

Adaptation to the ever-changing world is critical for survival, and our brains are particularly tuned to remember events that differ from previous experiences. Novel experiences induce dopamine release in the hippocampus, a process which promotes memory persistence. While axons from the ventral tegmental area (VTA) were generally thought to be the exclusive source of hippocampal dopamine, recent studies have demonstrated that noradrenergic neurons in the locus coeruleus (LC) corelease noradrenaline and dopamine in the hippocampus and that their dopamine release boosts memory retention as well. In this opinion article, we propose that the projections originating from the VTA and the LC belong to two distinct systems that enhance memory of novel events. Novel experiences that share some commonality with past ones ('common novelty') activate the VTA and promote semantic memory formation via systems memory consolidation. By contrast, experiences that bear only a minimal relationship to past experiences ('distinct novelty') activate the LC to trigger strong initial memory consolidation in the hippocampus, resulting in vivid and long-lasting episodic memories.


Asunto(s)
Dopamina/fisiología , Conducta Exploratoria , Hipocampo/fisiología , Locus Coeruleus/fisiología , Consolidación de la Memoria/fisiología , Área Tegmental Ventral/fisiología , Neuronas Adrenérgicas/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Humanos , Vías Nerviosas/fisiología , Norepinefrina/fisiología
17.
Curr Biol ; 28(21): 3508-3515.e5, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30415706

RESUMEN

We introduce the concept of "silent learning"-the capacity to learn despite neuronal cell-firing being largely absent. This idea emerged from thinking about dendritic computation [1, 2] and examining whether the encoding, expression, and retrieval of hippocampal-dependent memory could be dissociated using the intrahippocampal infusion of pharmacological compounds. We observed that very modest enhancement of GABAergic inhibition with low-dose muscimol blocked both cell-firing and the retrieval of an already-formed memory but left induction of long-term potentiation (LTP) and new spatial memory encoding intact (silent learning). In contrast, blockade of hippocampal NMDA receptors by intrahippocampal D-AP5 impaired both the induction of LTP and encoding but had no effect on memory retrieval. Blockade of AMPA receptors by CNQX impaired excitatory synaptic transmission and cell-firing and both memory encoding and retrieval. Thus, in keeping with the synaptic plasticity and memory hypothesis [3], the hippocampal network can mediate new memory encoding when LTP induction is intact even under conditions in which somatic cell-firing is blocked.


Asunto(s)
Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Animales , Hipocampo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
18.
Clin Calcium ; 28(4): 546-552, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29593143

RESUMEN

Everyday memories are encoded in the hippocampus and decay very rapidly. In contrast, everyday memory with novel experience before or after remains for a long time. Our research group applied optogenetics to behavioural test in mice. We revealed the possibility that non-canonical release of dopamine from the locus coeruleus into the hippocampus change trivial everyday memory to long-term memory.


Asunto(s)
Memoria , Optogenética , Animales , Hipocampo , Locus Coeruleus , Ratones
19.
Neural Plast ; 2017: 8602690, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123927

RESUMEN

Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.


Asunto(s)
Dopamina/fisiología , Hipocampo/fisiología , Locus Coeruleus/fisiología , Consolidación de la Memoria/fisiología , Plasticidad Neuronal , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , Animales , Humanos , Vías Nerviosas/fisiología
20.
Nature ; 537(7620): 357-362, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27602521

RESUMEN

The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH+) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH+ neurons project more profusely than ventral tegmental area TH+ neurons to the hippocampus, optogenetic activation of locus coeruleus TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.


Asunto(s)
Dopamina/metabolismo , Locus Coeruleus/fisiología , Consolidación de la Memoria/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Técnicas In Vitro , Locus Coeruleus/citología , Locus Coeruleus/efectos de la radiación , Masculino , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de la radiación , Optogenética , Receptores Adrenérgicos/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/antagonistas & inhibidores , Receptores de Dopamina D5/metabolismo , Transmisión Sináptica/efectos de los fármacos , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...