Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Commun ; 10(1): 4358, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554818

RESUMEN

Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metaboloma/efectos de los fármacos , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-myc/genética , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética
2.
Nat Commun ; 10(1): 4148, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515477

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in either PKD1 or PKD2 genes, is one of the most common human monogenetic disorders and the leading genetic cause of end-stage renal disease. Unfortunately, treatment options for ADPKD are limited. Here we report the discovery and characterization of RGLS4326, a first-in-class, short oligonucleotide inhibitor of microRNA-17 (miR-17), as a potential treatment for ADPKD. RGLS4326 is discovered by screening a chemically diverse and rationally designed library of anti-miR-17 oligonucleotides for optimal pharmaceutical properties. RGLS4326 preferentially distributes to kidney and collecting duct-derived cysts, displaces miR-17 from translationally active polysomes, and de-represses multiple miR-17 mRNA targets including Pkd1 and Pkd2. Importantly, RGLS4326 demonstrates a favorable preclinical safety profile and attenuates cyst growth in human in vitro ADPKD models and multiple PKD mouse models after subcutaneous administration. The preclinical characteristics of RGLS4326 support its clinical development as a disease-modifying treatment for ADPKD.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Oligonucleótidos/uso terapéutico , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/genética , Animales , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/efectos de los fármacos , Células HeLa , Hematopoyesis/efectos de los fármacos , Humanos , Túbulos Renales/patología , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Oligonucleótidos/farmacocinética , Oligonucleótidos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular/efectos de los fármacos
3.
J Pathol ; 249(4): 411-424, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31206668

RESUMEN

Prostate cancer is heterogeneous in both cellular composition and patient outcome, and development of biomarker signatures to distinguish indolent from aggressive tumours is a high priority. Stroma plays an important role during prostate cancer progression and undergoes histological and transcriptional changes associated with disease. However, identification and validation of stromal markers is limited by a lack of datasets with defined stromal/tumour ratio. We have developed a prostate-selective signature to estimate the stromal content in cancer samples of mixed cellular composition. We identified stromal-specific markers from transcriptomic datasets of developmental prostate mesenchyme and prostate cancer stroma. These were experimentally validated in cell lines, datasets of known stromal content, and by immunohistochemistry in tissue samples to verify stromal-specific expression. Linear models based upon six transcripts were able to infer the stromal content and estimate stromal composition in mixed tissues. The best model had a coefficient of determination R2 of 0.67. Application of our stromal content estimation model in various prostate cancer datasets led to improved performance of stromal predictive signatures for disease progression and metastasis. The stromal content of prostate tumours varies considerably; consequently, deconvolution of stromal proportion may yield better results than tumour cell deconvolution. We suggest that adjusting expression data for cell composition will improve stromal signature performance and lead to better prognosis and stratification of men with prostate cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Modelos Genéticos , Neoplasias de la Próstata/genética , Células del Estroma/metabolismo , Transcriptoma , Biomarcadores de Tumor/metabolismo , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Células PC-3 , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Sistema de Registros , Reproducibilidad de los Resultados , Estudios Retrospectivos , Células del Estroma/patología
4.
Int J Cancer ; 145(12): 3453-3461, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125117

RESUMEN

Prostatic small cell neuroendocrine carcinoma (SC/NE) is well studied in metastatic castration-resistant prostate cancer; however, it is not well characterized in the primary setting. Herein, we used gene expression profiling of SC/NE prostate cancer (PCa) to develop a 212 gene signature to identify treatment-naïve primary prostatic tumors that are molecularly analogous to SC/NE (SC/NE-like PCa). The 212 gene signature was tested in several cohorts confirming similar molecular profile between prostatic SC/NE and small cell lung carcinoma. The signature was then translated into a genomic score (SCGScore) using modularized logistic regression modeling and validated in four independent cohorts achieving an average AUC >0.95. The signature was evaluated in more than 25,000 primary adenocarcinomas to characterize the biology, prognosis and potential therapeutic response of predicted SC/NE-like tumors. Assessing SCGScore in a prospective cohort of 17,967 RP and 6,697 biopsy treatment-naïve primary tumors from the Decipher Genomic Resource Information Database registry, approximately 1% of the patients were found to have a SC/NE-like transcriptional profile, whereas 0.5 and 3% of GG1 and GG5 patients respectively showed to be SC/NE-like. More than 80% of these patients are genomically high-risk based on Decipher score. Interrogating in vitro drug sensitivity analyses, SC/NE-like prostatic tumors showed higher response to PARP and HDAC inhibitors.


Asunto(s)
Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transcriptoma/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Próstata/patología
5.
J Urol ; 202(2): 247-255, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31107158

RESUMEN

PURPOSE: Most prostate cancer in African American men lacks the ETS (E26 transforming specific) family fusion event (ETS-). We aimed to establish clinically relevant biomarkers in African American men by studying ETS dependent gene expression patterns to identified race specific genes predictive of outcomes. MATERIALS AND METHODS: Two multicenter cohorts of a total of 1,427 men were used for the discovery and validation (635 and 792 men, respectively) of race specific predictive biomarkers. We used false discovery rate adjusted q values to identify race and ETS dependent genes which were differentially expressed in African American men who experienced biochemical recurrence within 5 years. Principal component modeling along with survival analysis was done to assess the accuracy of the gene panel in predicting recurrence. RESULTS: We identified 3,047 genes which were differentially expressed based on ETS status. Of these genes 362 were differentially expressed in a race specific manner (false discovery rate 0.025 or less). A total of 81 genes were race specific and over expressed in African American men who experienced biochemical recurrence. The final gene panel included APOD, BCL6, EMP1, MYADM, SRGN and TIMP3. These genes were associated with 5-year biochemical recurrence (HR 1.97, 95% CI 1.27-3.06, p = 0.002) and they improved the predictive accuracy of clinicopathological variables only in African American men (60-month time dependent AUC 0.72). CONCLUSIONS: In an effort to elucidate biological features associated with prostate cancer aggressiveness in African American men we identified ETS dependent biomarkers predicting early onset biochemical recurrence only in African American men. Thus, these ETS dependent biomarkers representing ideal candidates for biomarkers of aggressive disease in this patient population.


Asunto(s)
Negro o Afroamericano/genética , Neoplasias de la Próstata/genética , Anciano , Biomarcadores de Tumor/genética , Estudios de Cohortes , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Pronóstico , Proteínas Proto-Oncogénicas c-ets/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-32914029

RESUMEN

PURPOSE: Multiparametric magnetic resonance imaging (mpMRI) is used widely for prostate cancer (PCa) evaluation. Approximately 35% of aggressive tumors, however, are not visible on mpMRI. We sought to identify the molecular alterations associated with mpMRI-invisible tumors and determine whether mpMRI visibility is associated with PCa prognosis. METHODS: Discovery and validation cohorts included patients who underwent mpMRI before radical prostatectomy and were found to harbor both mpMRI-visible (Prostate Imaging and Reporting Data System 3 to 5) and -invisible (Prostate Imaging and Reporting Data System 1 or 2) foci on surgical pathology. Next-generation sequencing was performed to determine differential gene expression between mpMRI-visible and -invisible foci. A genetic signature for tumor mpMRI visibility was derived in the discovery cohort and assessed in an independent validation cohort. Its association with long-term oncologic outcomes was evaluated in a separate testing cohort. RESULTS: The discovery cohort included 10 patients with 26 distinct PCa foci on surgical pathology, of which 12 (46%) were visible and 14 (54%) were invisible on preoperative mpMRI. Next-generation sequencing detected prioritized genetic mutations in 14 (54%) tumor foci (n = 8 mpMRI visible, n = 6 mpMRI invisible). A nine-gene signature (composed largely of cell organization/structure genes) associated with mpMRI visibility was derived (area under the curve = 0.89), and the signature predicted MRI visibility with 75% sensitivity and 100% specificity (area under the curve = 0.88) in the validation cohort. In the testing cohort (n = 375, median follow-up 8 years) there was no significant difference in biochemical recurrence, distant metastasis, or cancer-specific mortality in patients with predicted mpMRI-visible versus -invisible tumors (all P > .05). CONCLUSION: Compared with mpMRI-invisible disease, mpMRI-visible tumors are associated with underexpression of cellular organization genes. mpMRI visibility does not seem to be predictive of long-term cancer outcomes, highlighting the need for biopsy strategies that detect mpMRI-invisible tumors.

7.
Clin Cancer Res ; 25(16): 5082-5093, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30224344

RESUMEN

PURPOSE: After cisplatin-based neoadjuvant chemotherapy (NAC), 60% of patients with muscle-invasive bladder cancer (MIBC) still have residual invasive disease at radical cystectomy. The NAC-induced biological alterations in these cisplatin-resistant tumors remain largely unstudied. EXPERIMENTAL DESIGN: Radical cystectomy samples were available for gene expression analysis from 133 patients with residual invasive disease after cisplatin-based NAC, of whom 116 had matched pre-NAC samples. Unsupervised consensus clustering (CC) was performed and the consensus clusters were investigated for their biological and clinical characteristics. Hematoxylin & Eosin and IHC on tissue microarrays were used to confirm tissue sampling and gene expression analysis. RESULTS: Established molecular subtyping models proved to be inconsistent in their classification of the post-NAC samples. Unsupervised CC revealed four distinct consensus clusters. The CC1-Basal and CC2-Luminal subtypes expressed genes consistent with a basal and a luminal phenotype, respectively, and were similar to the corresponding established pretreatment molecular subtypes. The CC3-Immune subtype had the highest immune activity, including T-cell infiltration and checkpoint molecule expression, but lacked both basal and luminal markers. The CC4-Scar-like subtype expressed genes associated with wound healing/scarring, although the proportion of tumor cell content in this subtype did not differ from the other subtypes. Patients with CC4-Scar-like tumors had the most favorable prognosis. CONCLUSIONS: This study expands our knowledge on MIBC not responding to cisplatin by suggesting molecular subtypes to understand the biology of these tumors. Although these molecular subtypes imply consequences for adjuvant treatments, this ultimately needs to be tested in clinical trials.


Asunto(s)
Biomarcadores de Tumor/genética , Cisplatino/efectos adversos , Terapia Neoadyuvante/efectos adversos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Anciano , Cisplatino/administración & dosificación , Cistectomía , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía
8.
Prostate Cancer Prostatic Dis ; 22(2): 292-302, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30367117

RESUMEN

BACKGROUND: Prostate cancer (PCa) tumors harboring translocations of ETS family genes with the androgen responsive TMPRSS2 gene (ETS+ tumors) provide a robust biomarker for detecting PCa in approximately 70% of patients. ETS+ PCa express high levels of the androgen receptor (AR), yet PCa tumors lacking ETS fusions (ETS-) also express AR and demonstrate androgen-regulated growth. In this study, we evaluate the differences in the AR-regulated transcriptomes between ETS+ and ETS- PCa tumors. METHODS: 10,608 patient tumors from three independent PCa datasets classified as ETS+ (samples overexpressing ERG or other ETS family members) or ETS- (all other PCa) were analyzed for differential gene expression using false-discovery-rate adjusted methods and gene-set enrichment analysis (GSEA). RESULTS: Based on the expression of AR-dependent genes and an unsupervised Principal Component Analysis (PCA) model, AR-regulated gene expression alone was able to separate PCa samples into groups based on ETS status in all PCa databases. ETS status distinguished several differentially expressed genes in both TCGA (6.9%) and GRID (6.6%) databases, with 413 genes overlapping in both databases. Importantly, GSEA showed enrichment of distinct androgen-responsive genes in both ETS- and ETS+ tumors, and AR ChIP-seq data identified 131 direct AR-target genes that are regulated in an ETS-specific fashion. Notably, dysregulation of ETS-dependent AR-target genes within the metabolic and non-canonical WNT pathways was associated with clinical outcomes. CONCLUSIONS: ETS status influences the transcriptional repertoire of the AR, and ETS- PCa tumors appear to rely on distinctly different AR-dependent transcriptional programs to drive and sustain tumorigenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Receptores Androgénicos/metabolismo , Transcriptoma , Línea Celular Tumoral , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias de la Próstata/patología
9.
J Urol ; 200(6): 1241-1249, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30563651

RESUMEN

PURPOSE: Multiparametric magnetic resonance imaging is a diagnostic tool for prostate cancer with limited data on prognostic use. We sought to determine whether multiparametric magnetic resonance could predict aggressive prostate cancer features. MATERIALS AND METHODS: We retrospectively analyzed the records of 206 patients who underwent radical prostatectomy between 2013 and 2017. All patients had available RNA expression data on the final pathology specimen obtained from a location corresponding to a lesion location on multiparametric magnetic resonance imaging. The association between the PIRADS™ (Prostate Imaging Reporting and Data System) score and adverse pathology features were analyzed. We also performed differential transcriptomic analysis between the PIRADS groups. Factors associated with adverse pathology were analyzed using a multivariable logistic regression model. RESULTS: Lesion size (p = 0.03), PIRADS score (p = 0.02) and extraprostatic extension (p = 0.01) associated significantly with the Decipher® score. Multivariable analysis showed that the PIRADS score (referent PIRADS 3, OR 8.1, 95% CI 1.2-57.5, p = 0.04), the Gleason Grade Group (referent 3, OR 5.6, 95% CI 1.5-21.1, p = 0.01) and prostate specific antigen (OR 1.103, 95% CI 1.011-1.203) were risk factors for adverse pathology findings. The difference between PIRADS 4 and 5 did not reach significance (OR 1.9, 95% CI 0.8-4.5, p = 0.12). However, the PI3K-AKT-mTOR, WNT-ß and E2F signaling pathways were more active in PIRADS 5 than in PIRADS 4 cases. CONCLUSIONS: The PIRADS score is associated with adverse pathology results, increased metastatic risk and differential genomic pathway activation.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios de Factibilidad , Perfilación de la Expresión Génica , Humanos , Biopsia Guiada por Imagen/métodos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Valor Predictivo de las Pruebas , Estudios Prospectivos , Próstata/patología , Próstata/cirugía , Antígeno Prostático Específico/sangre , Prostatectomía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Estudios Retrospectivos
10.
Cancer Epidemiol Biomarkers Prev ; 27(11): 1376-1383, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30108099

RESUMEN

Background: We studied the utility of the tumor suppressor Tristetraprolin (TTP, ZFP36) as a clinically relevant biomarker of aggressive disease in prostate cancer patients after radical prostatectomy (RP).Methods: TTP RNA expression was measured in an RP cohort of patients treated at Moffitt Cancer Center (MCC) and obtained from six publically available RP datasets with biochemical recurrence (BCR; total n = 1,394) and/or metastatic outcome data (total n = 1,222). TTP protein expression was measured by immunohistochemistry in a tissue microarray of 153 MCC RP samples. The time to BCR or metastasis based on TTP RNA or protein levels was calculated using the Kaplan-Meier analysis. Univariable and multivariable Cox proportional hazard models were performed on multiple cohorts to evaluate if TTP is a clinically relevant biomarker and to assess if TTP improves upon the Cancer of the Prostate Risk Assessment postsurgical (CAPRA-S) score for predicting clinical outcomes.Results: In all of the RP patient cohorts, prostate cancer with low TTP RNA or protein levels had decreased time to BCR or metastasis versus TTP-high tumors. Further, the decreased time to BCR in TTP-low prostate cancer was more pronounced in low-grade tumors. Finally, pooled survival analysis suggests that TTP RNA expression provides independent information beyond CAPRA-S to predict BCR.Conclusions: TTP is a promising prostate cancer biomarker for predicting which RP patients will have poor outcomes, especially for low-grade prostate cancer patients.Impact: This study suggests that TTP RNA expression can be used to enhance the accuracy of CAPRA-S to predict outcomes in patients treated with RP. Cancer Epidemiol Biomarkers Prev; 27(11); 1376-83. ©2018 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Próstata/genética , Tristetraprolina/genética , Humanos , Masculino , Neoplasias de la Próstata/patología , Factores de Riesgo , Resultado del Tratamiento
11.
Clin Cancer Res ; 24(16): 3908-3916, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29760221

RESUMEN

Purpose: Currently, no genomic signature exists to distinguish men most likely to progress on adjuvant androgen deprivation therapy (ADT) after radical prostatectomy for high-risk prostate cancer. Here we develop and validate a gene expression signature to predict response to postoperative ADT.Experimental Design: A training set consisting of 284 radical prostatectomy patients was established after 1:1 propensity score matching metastasis between adjuvant-ADT (a-ADT)-treated and no ADT-treated groups. An ADT Response Signature (ADT-RS) was identified from neuroendocrine and AR signaling-related genes. Two independent cohorts were used to form three separate data sets for validation (set I, n = 232; set II, n = 435; set III, n = 612). The primary endpoint of the analysis was postoperative metastasis.Results: Increases in ADT-RS score were associated with a reduction in risk of metastasis only in a-ADT patients. On multivariable analysis, ADT-RS by ADT treatment interaction term remained associated with metastasis in both validation sets (set I: HR = 0.18, Pinteraction = 0.009; set II: HR = 0.25, Pinteraction = 0.019). In a matched validation set III, patients with Low ADT-RS scores had similar 10-year metastasis rates in the a-ADT and no-ADT groups (30.1% vs. 31.0%, P = 0.989). Among High ADT-RS patients, 10-year metastasis rates were significantly lower for a-ADT versus no-ADT patients (9.4% vs. 29.2%, P = 0.021). The marginal ADT-RS by ADT interaction remained significant in the matched dataset (Pinteraction = 0.035).Conclusions: Patients with High ADT-RS benefited from a-ADT. In combination with prognostic risk factors, use of ADT-RS may thus allow for identification of ADT-responsive tumors that may benefit most from early androgen blockade after radical prostatectomy. We discovered a gene signature that when present in primary prostate tumors may be useful to predict patients who may respond to early ADT after surgery. Clin Cancer Res; 24(16); 3908-16. ©2018 AACR.


Asunto(s)
Antagonistas de Andrógenos/administración & dosificación , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Anciano , Quimioterapia Adyuvante/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Pronóstico , Próstata/patología , Antígeno Prostático Específico/genética , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Vesículas Seminales/metabolismo , Vesículas Seminales/patología , Transcriptoma
12.
Gigascience ; 7(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29757368

RESUMEN

Background: Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results: We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion: To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.


Asunto(s)
Tumores Neuroendocrinos/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Animales , Sitios de Unión , Transdiferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Metástasis de la Neoplasia , Tumores Neuroendocrinos/patología , Motivos de Nucleótidos/genética , Fenotipo , Neoplasias de la Próstata/patología , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
EBioMedicine ; 31: 182-189, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29729848

RESUMEN

BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P < .05), with borderline significances achieved in the other two (P < .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Hipoxia Tumoral/genética , Supervivencia sin Enfermedad , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/terapia , Tasa de Supervivencia
14.
J Cancer Res Clin Oncol ; 144(5): 883-891, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29511883

RESUMEN

PURPOSE: To validate a previously characterized 10-gene signature in prostate cancer with implication to distinguish aggressive and indolent disease within low and intermediate patients' risk groups. METHODS: A case-control study design used to select 545 patients from the Mayo clinic tumor registry who underwent radical prostatectomy. A training set from this cohort (n = 359) was used to build a 10-gene model, based on high-dimensional discriminant analysis (HDDA10) to predict several endpoints of clinical patients' outcome. An independent set (n = 219) from the same institution was used as validation set. RESULTS: HDDA10 showed significant performance for predicting metastasis (Mets) (AUC 0.68, p = 6.4E - 6) and biochemical recurrence (BCR) (AUC = 0.65, p = 0.003) in the validation set outperforming Gleason grade grouping (GG) for BCR (AUC 0.57, p = 0.03) and with comparable performance for Mets endpoint (GG AUC 0.66, p = 8.1E - 5). HDDA10 prognostic significance was superior to any clinical-pathological parameter within GG2 + 3 (GS7) patients achieving an AUC of 0.74 (p = 0.0037) for BCR compared to Gleason pattern 4 (AUC 0.64) (p = 0.015) and AUC for Mets of 0.68 versus AUC of 0.65 for Gleason pattern 4 (p = 0.01). HDDA10 remained significant for both BCR and Mets in multivariate analysis, suggesting that it can be used to increase accuracy in stratifying patients eligible for active surveillance. CONCLUSION: HDDA10 is of added value to GG and other clinical-pathological parameters in predicting BCR and Mets endpoint, especially in the low to intermediate patients' risk groups. HDDA10 prognostic value should be further validated prospectively in stratifying patients specifically in low to intermediate GS (GG1-2), such as active surveillance programs.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Próstata/metabolismo , Neoplasias de la Próstata/genética , Estudios de Casos y Controles , Estudios de Cohortes , Humanos , Estimación de Kaplan-Meier , Masculino , Análisis Multivariante , Clasificación del Tumor , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Pronóstico , Próstata/patología , Próstata/cirugía , Prostatectomía/métodos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Reproducibilidad de los Resultados
15.
JCO Precis Oncol ; 20182018.
Artículo en Inglés | MEDLINE | ID: mdl-30761387

RESUMEN

PURPOSE: Molecular characterization of prostate cancer, including The Cancer Genome Atlas, has revealed distinct subtypes with underlying genomic alterations. One of these core subtypes, SPOP (speckle-type POZ protein) mutant prostate cancer, has previously only been identifiable via DNA sequencing, which has made the impact on prognosis and routinely used risk stratification parameters unclear. METHODS: We have developed a novel gene expression signature, classifier (Subclass Predictor Based on Transcriptional Data), and decision tree to predict the SPOP mutant subclass from RNA gene expression data and classify common prostate cancer molecular subtypes. We then validated and further interrogated the association of prostate cancer molecular subtypes with pathologic and clinical outcomes in retrospective and prospective cohorts of 8,158 patients. RESULTS: The subclass predictor based on transcriptional data model showed high sensitivity and specificity in multiple cohorts across both RNA sequencing and microarray gene expression platforms. We predicted approximately 8% to 9% of cases to be SPOP mutant from both retrospective and prospective cohorts. We found that the SPOP mutant subclass was associated with lower frequency of positive margins, extraprostatic extension, and seminal vesicle invasion at prostatectomy; however, SPOP mutant cancers were associated with higher pretreatment serum prostate-specific antigen (PSA). The association between SPOP mutant status and higher PSA level was validated in three independent cohorts. Despite high pretreatment PSA, the SPOP mutant subtype was associated with a favorable prognosis with improved metastasis-free survival, particularly in patients with high-risk preoperative PSA levels. CONCLUSION: Using a novel gene expression model and a decision tree algorithm to define prostate cancer molecular subclasses, we found that the SPOP mutant subclass is associated with higher preoperative PSA, less adverse pathologic features, and favorable prognosis. These findings suggest a paradigm in which the interpretation of common risk stratification parameters, particularly PSA, may be influenced by the underlying molecular subtype of prostate cancer.

16.
Eur Urol Focus ; 4(4): 540-546, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28753844

RESUMEN

BACKGROUND: The most suspicious lesions on multiparametric magnetic resonance imaging (MRI) may be representative of final pathology. OBJECTIVE: We connect imaging with high-precision spatial annotation of biopsies and genomic cancer signatures to compare the genomic signals of the index lesion and biopsy cores of adjacent and far away locations. DESIGN, SETTING, AND PARTICIPANTS: Eleven patients diagnosed with high-risk prostate cancer on MRI/transrectal ultrasound-fusion biopsy (Bx) and treated with radical prostatectomy (RP). Five tissue specimens were collected from each patient. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Whole transcriptome RNA-expression was profiled for each sample. Genomic signatures were used to compare signals in MRI invisible versus visible foci using Pearson's correlation and to assess intratumoral heterogeneity using hierarchical clustering. RESULTS AND LIMITATIONS: Ten RP and 27 Bx-samples passed quality control. Gene expression between RP and index Bx, but not adjacent benign samples, was highly correlated. Genomic Gleason grade classifier features measured across the different samples showed concordant expression across Bx and RP tumor samples, while an inverse expression pattern was observed between tumor and benign samples indicating the lack of a strong field-effect. The distribution of low and high Prostate Imaging Reporting and Data System (PI-RADS) samples was 10 and 11, respectively. Genomics of all low PI-RADS samples resembled benign tissue and most high PI-RADS samples resembled cancer tissue. A strong association was observed between PI-RADS version 2 and Decipher as well as the genomic Gleason grade classifier score. Clustering analysis showed that most samples cluster tightly by patient. One patient showed unique tumor biology in index versus secondary lesion suggesting the presence of intrapatient heterogeneity and the utility in profiling multiple foci identified by MRI. CONCLUSIONS: MRI-targeted Bx-genomics show excellent correlation with RP-genomics and confirm the information captured by PI-RADS. Sampling of the target lesion must be precise as correlation between index and benign lesions was not seen. PATIENT SUMMARY: In this report, we tested if targeted prostate sampling using magnetic resonance imaging-fusion biopsy allows to genetically describe index tumors of prostate cancer. We found that imaging genomics correlated well with final prostatectomy provided that the target is hit precisely.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Imagen por Resonancia Magnética Intervencional/métodos , Próstata , Prostatectomía/métodos , Neoplasias de la Próstata , Ultrasonografía Intervencional/métodos , Biopsia con Aguja Gruesa/métodos , Correlación de Datos , Humanos , Biopsia Guiada por Imagen/métodos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Próstata/diagnóstico por imagen , Próstata/patología , Próstata/cirugía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Transcriptoma
17.
Eur Urol ; 73(2): 168-175, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28400167

RESUMEN

BACKGROUND: Risk of prostate cancer-specific mortality (PCSM) is highly variable for men with adverse pathologic features at radical prostatectomy (RP); a majority will die of other causes. Accurately stratifying PCSM risk can improve therapy decisions. OBJECTIVE: Validate the 22 gene Decipher genomic classifier (GC) to predict PCSM in men with adverse pathologic features after RP. DESIGN, SETTING, AND PARTICIPANTS: Men with adverse pathologic features: pT3, pN1, positive margins, or Gleason score >7 who underwent RP in 1987-2010 at Johns Hopkins, Cleveland Clinic, Mayo Clinic, and Durham Veteran's Affairs Hospital. We also analyzed subgroups at high risk (prostate-specific antigen >20 ng/ml, RP Gleason score 8-10, or stage >pT3b), or very high risk of PCSM (biochemical recurrence in<2 yr [BCR2], or men who developed metastasis after RP [MET]). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Logistic regression evaluated the association of GC with PCSM within 10 yr of RP (PCSM10), adjusted for the Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRA-S). GC performance was evaluated with area under the receiver operating characteristic curve (AUC) and decision curves. RESULTS AND LIMITATIONS: Five hundred and sixty-one men (112 with PCSM10), median follow-up 13.0 yr (patients without PCSM10). For high GC score (> 0.6) versus low-intermediate (≤ 0.6), the odds ratio for PCSM10 adjusted for CAPRA-S was 3.91 (95% confidence interval: 2.43-6.29), with AUC=0.77, an increase of 0.04 compared with CAPRA-S. Subgroup odds ratios were 3.96, 3.06, and 1.95 for high risk, BCR2, or MET, respectively (all p<0.05), with AUCs 0.64-0.72. GC stratified cumulative PCSM10 incidence from 2.8% to 30%. Combined use of case-control and cohort data is a potential limitation. CONCLUSIONS: In a large cohort with the longest follow-up to date, Decipher GC demonstrated clinically important prediction of PCSM at 10 yr, independent of CAPRA-S, in men with adverse pathologic features, BCR2, or MET after RP. PATIENT SUMMARY: Decipher genomic classifier may improve treatment decision-making for men with adverse or high risk pathology after radical prostatectomy.


Asunto(s)
Genómica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Medición de Riesgo , Anciano , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/patología
18.
Eur Urol ; 73(4): 524-532, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28330676

RESUMEN

BACKGROUND: Clinical grading systems using clinical features alongside nomograms lack precision in guiding treatment decisions in prostate cancer (PCa). There is a critical need for identification of biomarkers that can more accurately stratify patients with primary PCa. OBJECTIVE: To identify a robust prognostic signature to better distinguish indolent from aggressive prostate cancer (PCa). DESIGN, SETTING, AND PARTICIPANTS: To develop the signature, whole-genome and whole-transcriptome sequencing was conducted on five PCa patient-derived xenograft (PDX) models collected from independent foci of a single primary tumor and exhibiting variable metastatic phenotypes. Multiple independent clinical cohorts including an intermediate-risk cohort were used to validate the biomarkers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The outcome measurement defining aggressive PCa was metastasis following radical prostatectomy. A generalized linear model with lasso regularization was used to build a 93-gene stroma-derived metastasis signature (SDMS). The SDMS association with metastasis was assessed using a Wilcoxon rank-sum test. Performance was evaluated using the area under the curve (AUC) for the receiver operating characteristic, and Kaplan-Meier curves. Univariable and multivariable regression models were used to compare the SDMS alongside clinicopathological variables and reported signatures. AUC was assessed to determine if SDMS is additive or synergistic to previously reported signatures. RESULTS AND LIMITATIONS: A close association between stromal gene expression and metastatic phenotype was observed. Accordingly, the SDMS was modeled and validated in multiple independent clinical cohorts. Patients with higher SDMS scores were found to have worse prognosis. Furthermore, SDMS was an independent prognostic factor, can stratify risk in intermediate-risk PCa, and can improve the performance of other previously reported signatures. CONCLUSIONS: Profiling of stromal gene expression led to development of an SDMS that was validated as independently prognostic for the metastatic potential of prostate tumors. PATIENT SUMMARY: Our stroma-derived metastasis signature can predict the metastatic potential of early stage disease and will strengthen decisions regarding selection of active surveillance versus surgery and/or radiation therapy for prostate cancer patients. Furthermore, profiling of stroma cells should be more consistent than profiling of diverse cellular populations of heterogeneous tumors.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Metástasis de la Neoplasia , Prostatectomía , Neoplasias de la Próstata , Células del Estroma/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Anciano , Animales , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/genética , Estadificación de Neoplasias , Evaluación de Resultado en la Atención de Salud , Valor Predictivo de las Pruebas , Pronóstico , Antígeno Prostático Específico/análisis , Prostatectomía/efectos adversos , Prostatectomía/métodos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Medición de Riesgo/métodos
19.
Cancer Res ; 77(20): 5479-5490, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916652

RESUMEN

Androgen receptor (AR) signaling is a key driver of prostate cancer, and androgen-deprivation therapy (ADT) is a standard treatment for patients with advanced and metastatic disease. However, patients receiving ADT eventually develop incurable castration-resistant prostate cancer (CRPC). Here, we report that the chromatin modifier LSD1, an important regulator of AR transcriptional activity, undergoes epigenetic reprogramming in CRPC. LSD1 reprogramming in this setting activated a subset of cell-cycle genes, including CENPE, a centromere binding protein and mitotic kinesin. CENPE was regulated by the co-binding of LSD1 and AR to its promoter, which was associated with loss of RB1 in CRPC. Notably, genetic deletion or pharmacological inhibition of CENPE significantly decreases tumor growth. Our findings show how LSD1-mediated epigenetic reprogramming drives CRPC, and they offer a mechanistic rationale for its therapeutic targeting in this disease. Cancer Res; 77(20); 5479-90. ©2017 AACR.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histona Demetilasas/genética , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata/embriología , Neoplasias de la Próstata/genética , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Reprogramación Celular/genética , Proteínas Cromosómicas no Histona/biosíntesis , Proteínas Cromosómicas no Histona/genética , Progresión de la Enfermedad , Epigénesis Genética , Xenoinjertos , Histona Demetilasas/metabolismo , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal , Transfección
20.
PLoS One ; 12(5): e0177569, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562641

RESUMEN

The quantitation of proteins using shotgun proteomics has gained popularity in the last decades, simplifying sample handling procedures, removing extensive protein separation steps and achieving a relatively high throughput readout. The process starts with the digestion of the protein mixture into peptides, which are then separated by liquid chromatography and sequenced by tandem mass spectrometry (MS/MS). At the end of the workflow, recovering the identity of the proteins originally present in the sample is often a difficult and ambiguous process, because more than one protein identifier may match a set of peptides identified from the MS/MS spectra. To address this identification problem, many MS/MS data processing software tools combine all plausible protein identifiers matching a common set of peptides into a protein group. However, this solution introduces new challenges in studies with multiple experimental runs, which can be characterized by three main factors: i) protein groups' identifiers are local, i.e., they vary run to run, ii) the composition of each group may change across runs, and iii) the supporting evidence of proteins within each group may also change across runs. Since in general there is no conclusive evidence about the absence of proteins in the groups, protein groups need to be linked across different runs in subsequent statistical analyses. We propose an algorithm, called Protein Group Code Algorithm (PGCA), to link groups from multiple experimental runs by forming global protein groups from connected local groups. The algorithm is computationally inexpensive and enables the connection and analysis of lists of protein groups across runs needed in biomarkers studies. We illustrate the identification problem and the stability of the PGCA mapping using 65 iTRAQ experimental runs. Further, we use two biomarker studies to show how PGCA enables the discovery of relevant candidate protein group markers with similar but non-identical compositions in different runs.


Asunto(s)
Algoritmos , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Biomarcadores , Trasplante de Corazón , Humanos , Distrofias Musculares/metabolismo , Proteómica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...