Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Tuberculosis (Edinb) ; 148: 102534, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38909563

RESUMEN

BACKGROUND: Extrapulmonary tuberculosis (EPTB) without symptomatic pulmonary involvement has been thought to be non-transmissible, but EPTB with asymptomatic pulmonary tuberculosis (PTB) could transmit tuberculosis (TB). Genomic investigation of Mycobacterium tuberculosis (Mtb) isolates from EPTB may provide insight into its epidemiological role in TB transmission. METHODS: Between January 2017 and May 2020, 107 Mtb isolates were obtained from surgical drainage of bone TB patients at the Beijing Chest Hospital, and 218 Mtb strains were isolated from PTB cases. These 325 Mtb isolates were whole-genome sequenced to reconstruct a phylogenetic tree, identify transmission clusters, and infer transmission links using a Bayesian approach. Possible subclinical PTB in the bone TB patients was investigated with chest imaging by two independent experts. RESULTS: Among 107 bone TB patients, 10 were in genomic clusters (≤12 SNPs). Phylogenetic analysis suggested that three bone TB patients transmitted the infection to secondary cases, supported by epidemiological investigations. Pulmonary imaging of 44 bone TB patients revealed that 79.5 % (35/44) had radiological abnormalities suggestive of subclinical PTB. CONCLUSIONS: This study provides genomic evidence that bone TB patients without clinically diagnosed PTB can be sources of TB transmission, underscoring the importance of screening for subclinical, transmissible PTB among EPTB cases.

2.
J Leukoc Biol ; 115(3): 525-535, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-37982587

RESUMEN

Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Animales , Humanos , Pez Cebra/microbiología , Granuloma/microbiología , Granuloma/patología
3.
Infect Immun ; 91(7): e0015523, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338365

RESUMEN

Macrophage (MΦ) infection models are important tools for studying host-mycobacterial interactions. Although the multiplicity of infection (MOI) is an important experimental variable, the selection of MOI in mycobacterial infection experiments is largely empirical, without reference to solid experimental data. To provide relevant data, we used RNA-seq to analyze the gene expression profiles of MΦs 4 or 24 h after infection with Mycobacterium marinum (M. m) at MOIs ranging from 0.1 to 50. Analysis of differentially expressed genes (DEGs) showed that different MOIs are linked to distinct transcriptomic changes and only 10% of DEGs were shared by MΦ infected at all MOIs. KEGG pathway enrichment analysis revealed that type I interferon (IFN)-related pathways were inoculant dose-dependent and enriched only at high MOIs, whereas TNF pathways were inoculant dose-independent and enriched at all MOIs. Protein-protein interaction (PPI) network alignment showed that different MOIs had distinct key node genes. By fluorescence-activated cell sorting and follow-up RT-PCR analysis, we could separate infected MΦs from uninfected MΦs and found phagocytosis of mycobacteria to be the determinant factor for type I IFN production. The distinct transcriptional regulation of RAW264.7 MΦ genes at different MOIs was also seen with Mycobacterium tuberculosis (M.tb) infections and primary MΦ infection models. In summary, transcriptional profiling of mycobacterial infected MΦs revealed that different MOIs activate distinct immune pathways and the type I IFN pathway is activated only at high MOIs. This study should provide guidance for selecting the MOI most appropriate for different research questions.


Asunto(s)
Interferón Tipo I , Mycobacterium tuberculosis , Transcriptoma , Transducción de Señal , Macrófagos , Mycobacterium tuberculosis/genética , Interferón Tipo I/genética
4.
Microbiol Spectr ; 11(4): e0333922, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37272796

RESUMEN

Strains of the Mycobacterium tuberculosis complex (MTBC) Beijing family aroused concern because they were often found in clusters and appeared to be exceptionally transmissible. However, it was later found that strains of the Beijing family were heterogeneous, and the transmission advantage was restricted to sublineage L2.3 or modern Beijing. In this study, we analyzed the previously published genome sequences of 7,896 L2.3 strains from 51 different countries. Using BEAST software to approximate the temporal emergence of L2.3, our calculations suggest that L2.3 initially emerged in northern East Asia during the early 15th century and subsequently diverged into six phylogenetic clades, identified as L2.3.1 through L2.3.6. Using terminal branch length and genomic clustering as proxies for transmissibility, we found that the six clades displayed distinct population dynamics, with the three recently emerged clades (L2.3.4 to L2.3.6) exhibiting significantly higher transmissibility than the older three clades (L2.3.1 to L2.3.3). Of the Beijing family strains isolated outside East Asia, 83.1% belonged to the clades L2.3.4 to L2.3.6, which were also associated with more cross-border transmission. This work reveals the heterogeneity in sublineage L2.3 and demonstrates that the global success of Beijing family strains is driven by the three recently emerged L2.3 clades. IMPORTANCE The recent population dynamics of the global tuberculosis epidemic are heavily shaped by Mycobacterium tuberculosis complex (MTBC) strains with enhanced transmissibility. The infamous Beijing family strain stands out because it has rapidly spread throughout the world. Identifying the strains responsible for the global expansion and tracing their evolution should help to understand the nature of high transmissibility and develop effective strategies to control transmission. In this study, we found that the L2.3 sublineage diversified into six phylogenetic clades (L2.3.1 to L2.3.6) with various transmission characteristics. Clades L2.3.4 to L2.3.6 exhibited significantly higher transmissibility than clades L2.3.1 to L2.3.3, which helps explain why more than 80% of Beijing family strains collected outside East Asia belong to these three clades. We conclude that the global success of L2.3 was not caused by the entire L2.3 sublineage but rather was due to the rapid expansion of L2.3.4 to L2.3.6. Tracking the transmission of L2.3.4 to L2.3.6 strains can help to formulate targeted TB prevention and control.


Asunto(s)
Mycobacterium tuberculosis , Beijing/epidemiología , Filogenia , Genotipo , Dinámica Poblacional
5.
Elife ; 122023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133242

RESUMEN

Drug resistance is a known risk factor for poor tuberculosis (TB) treatment outcomes, but the contribution of other bacterial factors to poor outcomes in drug-susceptible TB is less well understood. Here, we generate a population-based dataset of drug-susceptible Mycobacterium tuberculosis (MTB) isolates from China to identify factors associated with poor treatment outcomes. We analyzed whole-genome sequencing (WGS) data of MTB strains from 3196 patients, including 3105 patients with good and 91 patients with poor treatment outcomes, and linked genomes to patient epidemiological data. A genome-wide association study (GWAS) was performed to identify bacterial genomic variants associated with poor outcomes. Risk factors identified by logistic regression analysis were used in clinical models to predict treatment outcomes. GWAS identified fourteen MTB fixed mutations associated with poor treatment outcomes, but only 24.2% (22/91) of strains from patients with poor outcomes carried at least one of these mutations. Isolates from patients with poor outcomes showed a higher ratio of reactive oxygen species (ROS)-associated mutations compared to isolates from patients with good outcomes (26.3% vs 22.9%, t-test, p=0.027). Patient age, sex, and duration of diagnostic delay were also independently associated with poor outcomes. Bacterial factors alone had poor power to predict poor outcomes with an AUC of 0.58. The AUC with host factors alone was 0.70, but increased significantly to 0.74 (DeLong's test, p=0.01) when bacterial factors were also included. In conclusion, although we identified MTB genomic mutations that are significantly associated with poor treatment outcomes in drug-susceptible TB cases, their effects appear to be limited.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Estudio de Asociación del Genoma Completo , Diagnóstico Tardío , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética , Tuberculosis/microbiología , Mutación , Resultado del Tratamiento , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Pruebas de Sensibilidad Microbiana
6.
Microbiol Spectr ; 11(3): e0357022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37098911

RESUMEN

Mixed infections of Mycobacterium tuberculosis, defined as the coexistence of multiple genetically distinct strains within a single host, have been associated with unfavorable treatment outcomes. Different methods have been used to detect mixed infections, but their performances have not been carefully evaluated. To compare the sensitivity of whole-genome sequencing (WGS) and variable-number tandem repeats (VNTR) typing to detect mixed infections, we prepared 10 artificial samples composed of DNA mixtures from two strains in different proportions and retrospectively collected 1,084 clinical isolates. The limit of detection (LOD) for the presence of a minor strain was 5% for both WGS and VNTR typing. The overall clinical detection rate of mixed infections was 3.7% (40/1,084) for the two methods combined, WGS identified 37/1,084 (3.4%), and VNTR typing identified 14/1,084 (1.3%), including 11 also identified by WGS. Multivariate analysis demonstrated that retreatment patients had a 2.7 times (95% confidence interval [CI], 1.2 to 6.0) higher risk of mixed infections than new cases. Collectively, WGS is a more reliable tool to identify mixed infections than VNTR typing, and mixed infections are more common in retreated patients. IMPORTANCE Mixed infections of M. tuberculosis have the potential to render treatment regimens ineffective and affect the transmission dynamics of the disease. VNTR typing, currently the most widely used method for the detection of mixed infections, detects mixed infections only by interrogating a small fraction of the M. tuberculosis genome, which necessarily limits sensitivity. With the introduction of WGS, it became possible to study the entire genome, but no quantitative comparison has yet been undertaken. Our systematic comparison of the ability of WGS and VNTR typing to detect mixed infections, using both artificial samples and clinical isolates, revealed the superior performance of WGS at a high sequencing depth (~100×) and found that mixed infections are more common in patients being retreated for tuberculosis (TB) in the populations studied. This provides valuable information for the application of WGS in the detection of mixed infections and the implications of mixed infections for tuberculosis control.


Asunto(s)
Coinfección , Mycobacterium tuberculosis , Tuberculosis , Humanos , Estudios Retrospectivos , Polimorfismo de Nucleótido Simple , Tuberculosis/microbiología , Repeticiones de Minisatélite , Técnicas de Tipificación Bacteriana/métodos
7.
Microbiol Spectr ; : e0399122, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912683

RESUMEN

On the Tibetan Plateau, most tuberculosis is caused by indigenous Mycobacterium tuberculosis strains with a monophyletic structure and high-level drug resistance. This study investigated the emergence, evolution, and transmission dynamics of multidrug-resistant tuberculosis (MDR-TB) in Tibet. The whole-genome sequences of 576 clinical strains from Tibet were analyzed with the TB-profiler tool to identify drug-resistance mutations. The evolution of the drug resistance was then inferred based on maximum-likelihood phylogeny and dated trees that traced the serial acquisition of mutations conferring resistance to different drugs. Among the 576 clinical M. tuberculosis strains, 346 (60.1%) carried at least 1 resistance-conferring mutation and 231 (40.1%) were MDR-TB. Using a pairwise distance of 50 single nucleotide polymorphisms (SNPs), most strains (89.9%, 518/576) were phylogenetically separated into 50 long-term transmission clusters. Eleven large drug-resistant clusters contained 76.1% (176/231) of the local multidrug-resistant strains. A total of 85.2% of the isoniazid-resistant strains were highly transmitted with an average of 6.6 cases per cluster, of which most shared the mutation KatG Ser315Thr. A lower proportion (71.6%) of multidrug-resistant strains were transmitted, with an average cluster size of 2.9 cases. The isoniazid-resistant clusters appear to have undergone substantial bacterial population growth in the 1970s to 1990s and then subsequently accumulated multiple rifampicin-resistance mutations and caused the current local MDR-TB burden. These findings highlight the importance of detecting and curing isoniazid-resistant strains to prevent the emergence of endemic MDR-TB. IMPORTANCE Emerging isoniazid resistance in the 1970s allowed M. tuberculosis strains to spread and form into large multidrug-resistant tuberculosis clusters in the isolated plateau of Tibet, China. The epidemic was driven by the high risk of transmission as well as the potential of acquiring further drug resistance from isoniazid-resistant strains. Eleven large drug-resistant clusters consisted of the majority of local multidrug-resistant cases. Among the clusters, isoniazid resistance overwhelmingly evolved before all the other resistance types. A large bacterial population growth of isoniazid-resistant clusters occurred between 1970s and 1990s, which subsequently accumulated rifampicin-resistance-conferring mutations in parallel and accounted for the local multidrug-resistant tuberculosis burden. The results of our study indicate that it may be possible to restrict MDR-TB evolution and dissemination by prioritizing screening for isoniazid (INH)-resistant TB strains before they become MDR-TB and by adopting measures that can limit their transmission.

9.
Front Immunol ; 13: 893611, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693809

RESUMEN

The NOD-like receptors (NLRs) have been shown to be involved in infection and autoinflammatory disease. Previously, we identified a zebrafish NLR, nlrc3-like, required for macrophage homeostasis in the brain under physiological conditions. Here, we found that a deficiency of nlrc3-like leads to decreased bacterial burden at a very early stage of Mycobacterium marinum infection, along with increased production of pro-inflammatory cytokines, such as il-1ß and tnf-α. Interestingly, myeloid-lineage specific overexpression of nlrc3-like achieved the opposite effects, suggesting that the impact of nlrc3-like on the host anti-mycobacterial response is mainly due to its expression in the innate immune system. Fluorescence-activated cell sorting (FACS) and subsequent gene expression analysis demonstrated that inflammasome activation-related genes were upregulated in the infected macrophages of nlrc3-like deficient embryos. By disrupting asc, encoding apoptosis-associated speck-like protein containing a CARD, a key component for inflammasome activation, the bacterial burden increased in asc and nlrc3-like double deficient embryos compared with nlrc3-like single deficient embryos, implying the involvement of inflammasome activation in infection control. We also found extensive neutrophil infiltration in the nlrc3-like deficient larvae during infection, which was associated with comparable bacterial burden but increased tissue damage and death at a later stage that could be alleviated by administration of dexamethasone. Our findings uncovered an important role of nlrc3-like in the negative regulation of macrophage inflammasome activation and neutrophil infiltration during mycobacterial infection. This highlights the importance of a balanced innate immune response during mycobacterial infection and provides a potential molecular basis to explain how anti-inflammatory drugs can improve treatment outcomes in TB patients whose infection is accompanied by a hyperinflammatory response.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Infecciones por Mycobacterium no Tuberculosas , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas NLR/metabolismo , Pez Cebra/metabolismo
10.
J Infect ; 85(1): 49-56, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35588941

RESUMEN

OBJECTIVES: Environmental and host-related factors that contribute to the transmission of multidrug-resistant tuberculosis (MDR-TB) have become an increasing concern, but the impact of bacterial genetic factors associated with bacterial fitness on MDR-TB transmission is poorly understood. Here, we present a global view of the correlation between common fitness-related genotypes and MDR-TB transmission by analyzing a representative number of MDR-TB isolates. METHODS: We assembled a global whole genome sequencing (WGS) dataset of MDR-TB strains collected through retrospective cohorts or population-based approaches using public databases and literature curation. WGS-based clusters were defined as groups of strains with genomic difference of ≤ 5 SNPs. RESULTS: We curated high-quality WGS data of 4696 MDR-TB isolates from 17 countries with a mean clustering rate of 48% (range 0-100%). Correlational analysis showed that increased risk of MDR-TB strain clustering was not associated with compensatory mutations (OR 1.07, 95% CI 0.72-1.59), low-fitness cost drug-resistant mutations (katG S315T: OR 1.42, 95% CI 0.82-2.47; rpoB S450L: OR 1.26, 95% CI 0.87-1.83) or Lineage 2 (OR 1.50, 95% CI 0.95-2.39). CONCLUSIONS: The factors most commonly thought to increase bacterial fitness were not significantly associated with increased MDR-TB transmission, and thus do not appear to be major contributors to the current epidemic of MDR-TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Estudios Retrospectivos , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
11.
Emerg Microbes Infect ; 11(1): 715-724, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35125072

RESUMEN

The high prevalence of the modern Beijing sublineage of Mycobacterium tuberculosis may be related to increased virulence, although the responsible mechanisms remain poorly understood. We previously described enhanced triacylglycerol accumulation in modern Beijing strains. Here we show that modern Beijing strains grow faster in vitro and trigger a vigorous immune response and pronounced macrophage infiltration. Transcriptomic analysis of bone marrow derived macrophages infected with modern Beijing lineage strains revealed a significant enrichment of infection, cholesterol homeostasis and amino acid metabolic pathways. The upregulation of proinflammatory / bactericidal cytokines was confirmed by RT-PCR analysis, which is also in consistent with the reduced bacterial burden in modern strains infected macrophages. These results suggest that modern Beijing strains elicit a hyperinflammatory response which might indicate a stronger virulence and contribute to their extensive global prevalence.


Asunto(s)
Mycobacterium tuberculosis , Beijing , Citocinas/metabolismo , Genotipo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Virulencia
12.
Cell Surf ; 7: 100060, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34485766

RESUMEN

Four serine/threonine kinases are present in all mycobacteria: PknA, PknB, PknG and PknL. PknA and PknB are essential for growth and replication, PknG regulates metabolism, but little is known about PknL. Inactivation of pknL and adjacent regulator MSMEG_4242 in rough colony M. smegmatis mc2155 produced both smooth and rough colonies. Upon restreaking rough colonies, smooth colonies appeared at a frequency of ~ 1/250. Smooth mutants did not form biofilms, showed increased sliding motility and anomalous lipids on thin-layer chromatography, identified by mass spectrometry as lipooligosaccharides and perhaps also glycopeptidolipids. RNA-seq and Sanger sequencing revealed that all smooth mutants had inactivated lsr2 genes due to mutations and different IS1096 insertions. When complemented with lsr2, the colonies became rough, anomalous lipids disappeared and sliding motility decreased. Smooth mutants showed increased expression of IS1096 transposase TnpA and MSMEG_4727, which encodes a protein similar to PKS5. When MSMEG_4727 was deleted, smooth pknL/MSMEG_4242/lsr2 mutants reverted to rough, formed good biofilms, their motility decreased slightly and their anomalous lipids disappeared. Rough delpknL/del4242 mutants formed poor biofilms and showed decreased, aberrant sliding motility and both phenotypes were complemented with the two deleted genes. Inactivation of lsr2 changes colony morphology from rough to smooth, augments sliding motility and increases expression of MSMEG_4727 and other enzymes synthesizing lipooligosaccharides, apparently preventing biofilm formation. Similar morphological phase changes occur in other mycobacteria, likely reflecting environmental adaptations. PknL and MSMEG_4242 regulate lipid components of the outer cell envelope and their absence selects for lsr2 inactivation. A regulatory, phosphorylation cascade model is proposed.

13.
J Infect Dis ; 224(5): 889-893, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467983

RESUMEN

Tuberculosis heteroresistance, in which only a fraction of the bacteria in a patient with tuberculosis contains drug-resistant mutations, has been a rising concern. However, its origins and prevalence remain elusive. Here, whole-genome sequencing was performed on 83 serial isolates from 31 patients with multidrug-resistant tuberculosis, and heteroresistance was detected in isolates from 21 patients (67.74%). Heteroresistance persisted in the host for long periods, spanning months to years, and was associated with having multiple tubercular lesions. Our findings indicate that heteroresistance is common and persistent in patients with multidrug-resistant tuberculosis and may affect the success of their treatment regimens.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/genética , Secuenciación Completa del Genoma/métodos , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
14.
Tuberculosis (Edinb) ; 130: 102120, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411889

RESUMEN

The purpose of this study was to investigate the minimum level of heteroresistance that predicts poor tuberculosis treatment outcomes. This retrospective study enrolled 45 new tuberculosis patients with varied treatment outcomes and 16 drug-susceptible retreatment cases. Pretreatment isolates from these 61 patients were whole genome sequenced to detect heteroresistance. Heteroresistance was not found in isolates from any of the new patients, but was detected in isolates from retreatment patients who were nevertheless cured. The results of our small series of patients suggest that heteroresistance <1%, the threshold used to define resistance with the phenotypic proportion method, is not associated with poor treatment outcomes.


Asunto(s)
Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología , Adulto , Anciano , Femenino , Genoma Bacteriano , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Estudios Retrospectivos , Resultado del Tratamiento , Tuberculosis/tratamiento farmacológico , Secuenciación Completa del Genoma
15.
Tuberculosis (Edinb) ; 129: 102091, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34090078

RESUMEN

For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Aptitud Genética , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Isoniazida/farmacología , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Estreptomicina/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
16.
Tuberculosis (Edinb) ; 129: 102092, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34102584

RESUMEN

Multi-Drug-Resistant strains of Mycobacterium tuberculosis (MDR-TB) are a serious obstacle to global TB eradication. While most MDR-TB strains are infrequently transmitted, a few cause large transmission clusters that contribute substantially to local MDR-TB burdens. Here we examine whether the known mutations in these strains can explain their success. Drug resistance mutations differ in fitness costs and strains can also acquire compensatory mutations (CM) to restore fitness, but some highly transmitted MDR strains have no CM. The acquisition of resistance mutations that maintain high transmissibility seems to occur by chance and are more likely in strains that are intrinsically highly transmitted and cause many cases. Modern Beijing lineage strains have caused several large outbreaks, but MDR outbreaks are also caused by ancient Beijing and lineage 4 strains, suggesting the lineage is less important than the characteristics of the individual strain. The development of fluoroquinolone resistance appears to represent another level of selection, in which strains must surmount unknown fitness costs of gyrA mutations. The genetic determinants of high transmission are poorly defined but may involve genes encoding proteins involved in molybdenum acquisition and the Esx systems. In addition, strains eliciting lower cytokine responses and producing more caseating granulomas may have advantages for transmission. Successful MDR/XDR strains generally evolve from highly transmitted drug sensitive parent strains due to selection pressures from deficiencies in local TB control programs. Until TB incidence is considerably reduced, there will likely be highly transmitted strains that develop resistance to any new antibiotic.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Evolución Molecular , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacología , Brotes de Enfermedades , Humanos , Mutación , Mycobacterium tuberculosis/efectos de los fármacos
17.
Nat Commun ; 12(1): 2491, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941780

RESUMEN

Mycobacterium kansasii can cause serious pulmonary disease. It belongs to a group of closely-related species of non-tuberculous mycobacteria known as the M. kansasii complex (MKC). Here, we report a population genomics analysis of 358 MKC isolates from worldwide water and clinical sources. We find that recombination, likely mediated by distributive conjugative transfer, has contributed to speciation and on-going diversification of the MKC. Our analyses support municipal water as a main source of MKC infections. Furthermore, nearly 80% of the MKC infections are due to closely-related M. kansasii strains, forming a main cluster that apparently originated in the 1900s and subsequently expanded globally. Bioinformatic analyses indicate that several genes involved in metabolism (e.g., maintenance of the methylcitrate cycle), ESX-I secretion, metal ion homeostasis and cell surface remodelling may have contributed to M. kansasii's success and its ongoing adaptation to the human host.


Asunto(s)
Agua Potable/microbiología , Genoma Bacteriano/genética , Enfermedades Pulmonares/epidemiología , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Mycobacterium kansasii/genética , Metabolismo Energético/genética , Variación Genética/genética , Genética de Población/métodos , Genómica , Humanos , Enfermedades Pulmonares/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium kansasii/aislamiento & purificación , Virulencia/genética , Microbiología del Agua
18.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879609

RESUMEN

During its global dispersal, Mycobacterium tuberculosis (Mtb) has encountered varied geographic environments and host populations. Although local adaptation seems to be a plausible model for describing long-term host-pathogen interactions, genetic evidence for this model is lacking. Here, we analyzed 576 whole-genome sequences of Mtb strains sampled from different regions of high-altitude Tibet. Our results show that, after sequential introduction of a few ancestral strains, the Tibetan Mtb population diversified locally while maintaining strict separation from the Mtb populations on the lower altitude plain regions of China. The current population structure and estimated past population dynamics suggest that the modern Beijing sublineage strains, which expanded over most of China and other global regions, did not show an expansion advantage in Tibet. The mutations in the Tibetan strains showed a higher proportion of A > G/T > C transitions than strains from the plain regions, and genes encoding DNA repair enzymes showed evidence of positive selection. Moreover, the long-term Tibetan exclusive selection for truncating mutations in the thiol-oxidoreductase encoding sseA gene suggests that Mtb was subjected to local selective pressures associated with oxidative stress. Collectively, the population genomics of Mtb strains in the relatively isolated population of Tibet provides genetic evidence that Mtb has adapted to local environments.


Asunto(s)
Adaptación Biológica/genética , Adaptación Fisiológica/genética , Mycobacterium tuberculosis/genética , Aclimatación/genética , Altitud , Evolución Biológica , China , Genotipo , Mutación , Mycobacterium tuberculosis/metabolismo , Filogenia , Dinámica Poblacional/tendencias , Selección Genética/genética , Tibet/epidemiología
19.
JMIR Mhealth Uhealth ; 8(7): e17658, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32735222

RESUMEN

BACKGROUND: Treatment of pulmonary tuberculosis (TB) requires at least six months and is compromised by poor adherence. In the directly observed therapy (DOT) scheme recommended by the World Health Organization, the patient is directly observed taking their medications at a health post. An alternative to DOT is video-observed therapy (VOT), in which the patients take videos of themselves taking the medication and the video is uploaded into the app and reviewed by a health care worker. We developed a comprehensive TB management system by using VOT that is installed as an app on the smartphones of both patients and health care workers. It was implemented into the routine TB control program of the Nanshan District of Shenzhen, China. OBJECTIVE: The aim of this study was to compare the effectiveness of VOT with that of DOT in managing the treatment of patients with pulmonary TB and to evaluate the acceptance of VOT for TB management by patients and health care workers. METHODS: Patients beginning treatment between September 2017 and August 2018 were enrolled into the VOT group and their data were compared with the retrospective data of patients who began TB treatment and were managed with routine DOT between January 2016 and August 2017. Sociodemographic characteristics, clinical features, treatment adherence, positive findings of sputum smears, reporting of side effects, time and costs of transportation, and satisfaction were compared between the 2 treatment groups. The attitudes of the health care workers toward the VOT-based system were also analyzed. RESULTS: This study included 158 patients in the retrospective DOT group and 235 patients in the VOT group. The VOT group showed a significantly higher fraction of doses observed (P<.001), less missed observed doses (P<.001), and fewer treatment discontinuations (P<.05) than the DOT group. Over 79.1% (186/235) of the VOT patients had >85% of their doses observed, while only 16.4% (26/158) of the DOT patients had >85% of their doses observed. All patients were cured without recurrences. The VOT management required significantly (P<.001) less median patient time (300 minutes vs 1240 minutes, respectively) and transportation costs (¥53 [US $7.57] vs ¥276 [US $39.43], respectively; P<.001) than DOT. Significantly more patients (191/235, 81.3%) in the VOT group preferred their treatment method compared to those on DOT (37/131, 28.2%) (P<.001), and 92% (61/66) of the health care workers thought that the VOT method was more convenient than DOT for managing patients with TB. CONCLUSIONS: Implementation of the VOT-based system into the routine program of TB management was simple and it significantly increased patient adherence to their drug regimens. Our study shows that a comprehensive VOT-based TB management represents a viable and improved evolution of DOT.


Asunto(s)
Cumplimiento de la Medicación , Aplicaciones Móviles , Tuberculosis , Grabación en Video , Adulto , Anciano , Antituberculosos/uso terapéutico , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tuberculosis/tratamiento farmacológico
20.
Artículo en Inglés | MEDLINE | ID: mdl-32482677

RESUMEN

We isolated spontaneous levofloxacin-resistant strains of Mycobacterium aurum to study the fitness cost and compensatory evolution of fluoroquinolone resistance in mycobacteria. Five of six mutant strains with substantial growth defects showed restored fitness after being serially passaged for 18 growth cycles, along with increased cellular ATP level. Whole-genome sequencing identified putative compensatory mutations in the glgC gene that restored the fitness of the resistant strains, presumably by altering the bacterial energy metabolism.


Asunto(s)
Mycobacterium tuberculosis , Farmacorresistencia Bacteriana/genética , Levofloxacino/farmacología , Mutación , Mycobacteriaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...