Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1304: 342539, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637037

RESUMEN

Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.


Asunto(s)
Hidrogeles , Esferoides Celulares , Humanos , Microscopía Electroquímica de Rastreo , Células Cultivadas , Ingeniería de Tejidos/métodos , Consumo de Oxígeno , Impresión Tridimensional
2.
Nanoscale ; 16(13): 6442-6448, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465880

RESUMEN

The development of artificial non-equilibrium chemical reaction systems has recently attracted considerable attention as a new type of biomimetic. However, due to the lack of bioorthogonality, such reaction systems could not be linked to the regulation of any biological phenomena. Here, we have newly designed a non-equilibrium reaction system based on olefin metathesis to produce the Triton X-mimetic non-ionic amphiphile as a kinetic product. Using phospholipid vesicles encapsulating fluorescent dyes and red blood cells as cell models, we demonstrate that the developed chemical reaction system is applicable for transient control of the resulting lytic activity.


Asunto(s)
Eritrocitos , Fosfolípidos , Octoxinol , Colorantes Fluorescentes
4.
Interface Focus ; 13(5): 20230021, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577000

RESUMEN

Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.

5.
Adv Healthc Mater ; 12(31): e2302011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37478383

RESUMEN

Core-shell hydrogel fibers are widely used in cell culture applications. A simple and rapid method is presented for fabricating core-shell hydrogel fibers, consisting of straight or beaded core fibers, for cell culture applications. The core fibers are prepared using interfacial polyelectrolyte complexation (IPC) with chitosan and DNA. Briefly, two droplets of chitosan and DNA are brought in contact to form an IPC film, which is dragged to prepare an IPC fiber. The incubation time and DNA concentration are adjusted to prepare straight and beaded IPC fibers. The fibers with Ca2+ are immersed in an alginate solution to form calcium alginate shell hydrogels around the core IPC fibers. To the best of the knowledge, this is the first report of core-shell hydrogel fibers with IPC fiber cores. To demonstrate cell culture, straight hydrogel fibers are applied to fabricate hepatic models consisting of HepG2 and 3T3 fibroblasts, and vascular models consisting of human umbilical vein endothelial cells and 3T3 fibroblasts. To evaluate the effect of co-culture, albumin secretion, and angiogenesis are evaluated. Beaded hydrogel fibers are used to fabricate many size-controlled spheroids for fiber and cloning applications. This method can be widely applied in tissue engineering and cell analysis.


Asunto(s)
Quitosano , Hidrogeles , Humanos , Polielectrolitos , Alginatos , Células Endoteliales , Técnicas de Cultivo de Célula/métodos , ADN
6.
Anal Chem ; 95(25): 9548-9554, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37253150

RESUMEN

The majority of biological reactions in the cytoplasm of living cells occur via enzymatic cascade reactions. To achieve efficient enzyme cascade reactions mimicking the proximity conditions of enzymes in the cytoplasm, the proximity of each enzyme, creating a high local concentration of proteins, has been recently investigated using the conjugation of synthetic polymer molecules, proteins, and nucleic acids. Although there have been methodologies reported for the complex formation and enhanced activity of cascade reactions due to the proximity of each enzyme using DNA nanotechnology, one pair of the enzyme (GOx and HRP) complex is only assembled by the mutual independence of various shapes of the DNA structure. This study reports the network formation of three enzyme complexes assembled by a triple-branched DNA structure as a unit, thus enabling the reversible formation and dispersion of the three enzyme complex networks using single-stranded DNA, RNA, and enzymes. It was found that the activities of the three enzyme cascade reactions in the enzyme-DNA complex network were controlled by formation and dispersion of the three enzyme complex networks, due to the proximity of each enzyme with the enzyme-DNA complex network. Furthermore, three micro RNA sequences for breast cancer biomarkers were successfully detected using an enzyme-DNA complex network integrated with DNA computing. Overall, the reversible formation and dispersion of the enzyme-DNA complex network through the external stimulation of biomolecules and DNA computing provide a novel platform for controlling the production amount, diagnosis, theranostics, and biological or environmental sensing.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Humanos , Femenino , ADN/química , ADN de Cadena Simple , Nanotecnología/métodos , Complejos Multienzimáticos/metabolismo
7.
Nanoscale Adv ; 5(7): 1919-1925, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36998664

RESUMEN

Liquid-liquid phase separation (LLPS) of biopolymer molecules generates liquid-like droplets. Physical properties such as viscosity and surface tension play important roles in the functions of these droplets. DNA-nanostructure-based LLPS systems provide useful model tools to investigate the influence of molecular design on the physical properties of the droplets, which has so far remained unclear. Herein, we report changes in the physical properties of DNA droplets by sticky end (SE) design in DNA nanostructures. We used a Y-shaped DNA nanostructure (Y-motif) with three SEs as a model structure. Seven different SE designs were used. The experiments were performed at the phase transition temperature where the Y-motifs self-assembled into droplets. We found that the DNA droplets assembled from the Y-motifs with longer SEs exhibited a longer coalescence period. In addition, the Y-motifs with the same length but different sequence SEs showed slight variations in the coalescence period. Our results suggest that the SE length greatly affected the surface tension at the phase transition temperature. We believe that these findings will accelerate our understanding of the relationship between molecular design and the physical properties of droplets formed via LLPS.

8.
Adv Biol (Weinh) ; 7(3): e2200180, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470673

RESUMEN

Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.


Asunto(s)
ADN , Nanotecnología , ADN/química
9.
Chembiochem ; 23(17): e202200240, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35686962

RESUMEN

DNA is an excellent material for constructing self-assembled nano/microstructures. Owing to the widespread use of DNA as a building block in laboratories and industry, it is desirable to increase the efficiency of all steps involved in producing self-assembled DNA structures. One of the bottlenecks is the purification required to separate the excess components from the target structures. This paper describes a purification method based on the fractionation by water-in-water (W/W) droplets composed of phase-separated dextran-rich droplets in a polyethylene glycol (PEG)-rich continuous phase. The dextran-rich droplets facilitate the selective uptake of self-assembled DNA nano/microstructures and allow the separation of the target structure. This study investigates the ability to purify DNA origami, DNA hydrogels, and DNA microtubes. The W/W-droplet fractionation allows the purification of structures of a broad size spectrum without changes to the protocol. By quantifying the activity of deoxyribozyme-modified DNA origami after W/W-droplet purification, this study demonstrates that this method sufficiently preserves the accessibility to the surface of a functional DNA nanostructure. It is considered that the W/W-droplet fractionation could become one of the standard methods for the purification of self-assembled DNA nano/microstructures for biomedical and nanotechnology applications owing to its low cost and simplicity.


Asunto(s)
Nanoestructuras , Agua , ADN/química , Dextranos , Nanoestructuras/química , Nanotecnología/métodos , Agua/química
10.
Sci Rep ; 12(1): 9692, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690676

RESUMEN

This paper describes repeatable detection of Ag+ ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with a microfluidic heating system. Biochemical sensors that respond to chemical compounds and produce detectable signals have a critical role in many aspects of modern society. In particular, the repeatable measurement of environmental information such as toxic substances including Ag+ ions could be expected to improve the environment. The DNA aptamer is an attractive candidate because of the stability and the selectivity of binding to chemicals. However, previous DNA aptamer biochemical sensors could not measure repeatedly because those sensors did not have initializing functions. To overcome this challenge, we proposed a DNA aptamer-linked hydrogel biochemical sensor integrated with the microfluidic heating system enabling repeatable detection of Ag+ ions. The binding Ag+ ions are dissociated by heating and flushing through the integrated microfluidic heating device. The DNA aptamer-linked hydrogel had the capability to detect a wide range of Ag+ ion concentrations (10-5-10 mM) including a toxic range for various aquatic organisms. Finally, we demonstrated the repeatable detection of the Ag+ ions. These results indicated that our proposed biochemical sensor is expected to use for long-term monitoring with high stability in ambient temperature and low power consumption.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Calefacción , Hidrogeles , Iones/química , Microfluídica
11.
Micromachines (Basel) ; 13(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35334714

RESUMEN

Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel electrochemical strategy for gluing hydrogel fibers. In this strategy, a microelectrode electrochemically generated HClO or Ca2+, and these chemicals were used to crosslink chitosan-alginate fibers fabricated using interfacial polyelectrolyte complexation. Further, human umbilical vein endothelial cells were incorporated into the fibers, and two such fibers were glued together to construct "+"-shaped hydrogels. After gluing, the hydrogels were embedded in Matrigel and cultured for several days. The cells spread and proliferated along the fibers, indicating that the electrochemical glue was not toxic toward the cells. This is the first report on the use of electrochemical glue for the assembly of hydrogel pieces containing cells. Based on our results, the electrochemical gluing method has promising applications in tissue engineering and the development of organs on a chip.

12.
JACS Au ; 2(1): 159-168, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098232

RESUMEN

Phase separation is a key phenomenon in artificial cell construction. Recent studies have shown that the liquid-liquid phase separation of designed-DNA nanostructures induces the formation of liquid-like condensates that eventually become hydrogels by lowering the solution temperature. As a compartmental capsule is an essential artificial cell structure, many studies have focused on the lateral phase separation of artificial lipid vesicles. However, controlling phase separation using a molecular design approach remains challenging. Here, we present the lateral liquid-liquid phase separation of DNA nanostructures that leads to the formation of phase-separated capsule-like hydrogels. We designed three types of DNA nanostructures (two orthogonal and a linker nanostructure) that were adsorbed onto an interface of water-in-oil (W/O) droplets via electrostatic interactions. The phase separation of DNA nanostructures led to the formation of hydrogels with bicontinuous, patch, and mix patterns, due to the immiscibility of liquid-like DNA during the self-assembly process. The frequency of appearance of these patterns was altered by designing DNA sequences and altering the mixing ratio of the nanostructures. We constructed a phase diagram for the capsule-like DNA hydrogels by investigating pattern formation under various conditions. The phase-separated DNA hydrogels did not only form on the W/O droplet interface but also on the inner leaflet of lipid vesicles. Notably, the capsule-like hydrogels were extracted into an aqueous solution, maintaining the patterns formed by the lateral phase separation. In addition, the extracted hydrogels were successfully combined with enzymatic reactions, which induced their degradation. Our results provide a method for the design and control of phase-separated hydrogel capsules using sequence-designed DNAs. We envision that by incorporating various DNA nanodevices into DNA hydrogel capsules, the capsules will gain molecular sensing, chemical-information processing, and mechanochemical actuating functions, allowing the construction of functional molecular systems.

13.
iScience ; 24(8): 102859, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34386726

RESUMEN

Biochemical systems in living cells have their optimum concentration ratio among each constituent element to maintain their functionality. However, in the case of the biochemical system with complex interactions and feedbacks among elements, their activity as a system greatly changes by the concentration shift of the entire system irrespective of the concentration ratio among elements. In this study, by using a transcription-translation (TX-TL) system as the subject, we illustrate the principle of the nonlinear relationship between the system concentration and the activity of the system. Our experiment and simulation showed that shifts of the system concentration of TX-TL by dilution and concentration works as a switch of activity and demonstrated its ability to induce a biochemical system to confer the permeability of small molecules to liposomes. These results contribute to the creation of artificial cells with the switch and provide an insight into the emergence of protocells.

14.
Front Genet ; 12: 705022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367260

RESUMEN

DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.

15.
Micromachines (Basel) ; 11(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255399

RESUMEN

Molecular machines and molecular robots are a highly interdisciplinary research field including material science, chemistry, biotechnology, biophysics, soft matter physics, micro-electromechanical systems (MEMS), and computer science [...].

16.
Nucleic Acids Res ; 48(22): 12648-12659, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33238306

RESUMEN

Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.


Asunto(s)
Cromatina/genética , Epigénesis Genética , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética , Acetilación , Animales , Histonas/genética , Lisina/genética , Nucleosomas/genética , ARN Ribosómico 5S/genética , Xenopus laevis/genética
17.
Sci Adv ; 6(23): eaba3471, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32537507

RESUMEN

DNA has the potential to achieve a controllable macromolecular structure, such as hydrogels or droplets formed through liquid-liquid phase separation (LLPS), as the design of its base sequence can result in programmable interactions. Here, we constructed "DNA droplets" via LLPS of sequence-designed DNA nanostructures and controlled their dynamic functions by designing their sequences. Specifically, we were able to adjust the temperature required for the formation of DNA droplets by designing the sequences. In addition, the fusion, fission, and formation of Janus-shaped droplets were controlled by sequence design and enzymatic reactions. Furthermore, modifications of proteins with sequence-designed DNAs allowed for their capture into specific droplets. Overall, our results provide a platform for designing and controlling macromolecular droplets via the information encoded in component molecules and pave the way for various applications of sequence-designed DNA such as cell mimics, synthetic membraneless organelles, and artificial molecular systems.


Asunto(s)
ADN , Proteínas , ADN/química , ADN/genética , Sustancias Macromoleculares/química , Proteínas/química
18.
APL Bioeng ; 4(1): 016109, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32206743

RESUMEN

We report a photolithographic method for the shape control of DNA hydrogels based on photo-activated self-assembly of Y-shaped DNA nanostructures (Y-motifs). To date, various methods to control the shape of DNA hydrogels have been developed to enhance the functions of the DNA hydrogel system. However, photolithographic production of shape-controlled DNA hydrogels formed through the self-assembly of DNA nanostructures without the use of radical polymerizations has never been demonstrated, although such a method is expected to be applied for the shape-control of DNA hydrogels encapsulating sensitive biomolecules, such as proteins. In this study, we used a photo-activated linker to initiate the self-assembly of Y-motifs, where the cross-linker DNA was at first inactive but was activated after UV light irradiation, resulting in the formation of shape-controlled DNA hydrogels only at the UV-exposed area produced by photomasks. We believe that this method will be applied for the construction of biohybrid machines, such as molecular robots and artificial cells that contain intelligent biomolecular devices, such as molecular sensors and computers.

19.
RSC Adv ; 10(15): 8895-8904, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496525

RESUMEN

This study examined the effects of surfactants on the motion and positioning of microparticles in an inhomogeneous electric field. The microparticles were suspended in oil with a surfactant and the electric field was generated using sawtooth-patterned electrodes. The microparticles were trapped, oscillating, or attached to the electrodes. The proportion of microparticles in each state was defined by the concentration of surfactant and the voltage applied to the electrodes. Based on the trajectory of the microparticles in the electric field, we developed a new physical model in which the surfactant adsorbed on the microparticles allowed the microparticles to be charged by contact with the electrodes, with either positive or negative charges, while the non-adsorbed surfactant micellizing in the oil contributed to charge relaxation. A simulation based on this model showed that the charging and charge relaxation, as modulated by the surfactant concentration, can explain the trajectories and proportion of the trapped, oscillating, and attached microparticles. These results will be useful for the development of novel self-assembly and transport technologies and colloids sensitive to electricity.

20.
Langmuir ; 35(41): 13351-13355, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31550892

RESUMEN

Self-propelled motion of micrometer-sized oil droplets in surfactant solution has drawn much attention as an example of nonlinear life-like dynamics under far-from-equilibrium conditions. The driving force of this motion is thought to be induced by Marangoni convection based on heterogeneity in the interfacial tension at the droplet surface. Here, to clarify the required conditions for the self-propelled motion of oil droplets, we have constructed a chemical system, where oil droplet motion is induced by the production of 1,2,3-triazole-containing surfactants through the Cu-catalyzed azide-alkyne cycloaddition reaction. From the results of the visualization and analysis of flow fields around the droplet, the motion of the droplets could be attributed to the formation of flow fields, which achieved sufficient strength caused by the in situ production of surfactants at the droplet surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...