Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648465

RESUMEN

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células Fotorreceptoras Retinianas Bastones , Retinitis Pigmentosa , Rodopsina , Animales , Rodopsina/metabolismo , Rodopsina/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Ratones , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Cilios/metabolismo , Cilios/patología
2.
iScience ; 23(12): 101762, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33251495

RESUMEN

Vision is essential for vertebrates including humans. Sustained vision is accomplished by retinoid metabolism, the "visual cycle," where all-trans retinol (atROL) is incorporated into the retinal pigment epithelium (RPE) from photoreceptors presumably through decade-long missing receptor(s). Here, we show that the LDL-related receptor-5 (Lrp5) protein is linked to the retinol binding protein 1a (Rbp1a), the transporter of atROL in the visual cycle, by generating and analyzing the digenic eyes shut homolog +/- ; lrp5 +/- zebrafish, the same form of gene defect detected in a human case of inherited retinal degeneration. Global gene expression analysis followed by genetic study clarified that rbp1a played a role downstream of lrp5. Rbp1a protein was colocalized with Lrp5 protein at microvilli of RPE cells. Furthermore, Rbp1a directly bound to the C-terminal intracellular region of Lrp5 in vitro. Collectively, these results strongly suggest that Lrp5 is a potent candidate of the receptor of atROL in the visual cycle.

3.
FASEB J ; 33(8): 9422-9433, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31120796

RESUMEN

Inherited mutations in the eyes shut homolog (EYS) gene cause retinitis pigmentosa. Although knock out of eys in zebrafish is pathogenic, the molecular function of EYS in vertebrate photoreceptors is poorly understood. Here, we show that the 5' portion of EYS is eye-specific across vertebrates. We previously determined that a 3' fragment of EYS with an unknown transcription start site is expressed in human dermal fibroblasts (HDF). To obtain insights into the molecular function of EYS in vertebrate photoreceptors, we extensively analyzed EYS (eys) expression in the human fibroblast cell line HDF-adult (HDF-a), the Y79 retinoblastoma cell line, and in zebrafish eyes using rapid amplification of cDNA end, cap analysis of gene expression, RNA sequencing, and RT-PCR. In HDF-a cells, we identified a novel transcript variant (tv), tv5, transcribed from exon 37. In Y79 cells and zebrafish eyes, EYS (eys) was predominantly transcribed from exon 1 or 2, whereas it was transcribed exclusively from exon 37 in HDF-a cells. In the zebrafish eye, there were splice variants that introduced stop codons, resulting in complete loss of the 3' portion of the RNA. These comparative approaches indicate that the 5' portion of the EYS (eys) mRNA appears to be photoreceptor-specific and that the compositions of the deduced EYS proteins in the eye are well-conserved across vertebrates.-Takita, S., Miyamoto-Matsui, K., Seko, Y. Intra- and interspecies comparison of EYS transcripts highlights its characteristics in the eye.


Asunto(s)
Proteínas del Ojo/metabolismo , Ojo/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Biología Computacional , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Fibroblastos/metabolismo , Humanos , Análisis de Secuencia de ADN , Pez Cebra
4.
Stem Cell Res Ther ; 9(1): 279, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30359287

RESUMEN

BACKGROUND: Generation of induced photoreceptors holds promise for in vitro modeling of intractable retinal diseases. Retinitis pigmentosa is an inherited retinal dystrophy that leads to visual impairment. The EYS gene was reported to be the most common gene responsible for autosomal recessive retinitis pigmentosa (arRP). arRP with defects in the EYS gene is denoted by "EYS-RP". We previously established a "redirect differentiation" method to generate photosensitive photoreceptor-like cells from commercially available human dermal fibroblasts. In this study, we produced photoreceptor-like cells from dermal fibroblasts of EYS-RP patients as a replacement for the degenerative retinas using "redirect differentiation". We analyzed defective transcripts of the EYS gene in these cells to elucidate phenotypes of EYS-RP patients because decay of transcripts was previously suggested to be involved in phenotypic variation associated with diseases. METHODS: Using "redirect differentiation" by CRX, RAX, NeuroD and OTX2, we made photoreceptor-directed fibroblasts derived from three normal volunteers and three EYS-RP patients with homozygous or heterozygous mutations. We tested inducible expression of the photoreceptor-specific genes (blue opsin, rhodopsin, recoverin, S-antigen, PDE6C) in these cells. We then analyzed transcripts derived from three different types of the defective EYS gene, c.1211dupA, c.4957dupA and c.8805C > A, expressed in these cells by RT-PCR and sequencing. RESULTS: Photoreceptor-specific genes including the EYS gene were up-regulated in all the photoreceptor-directed fibroblasts tested. However, expression levels of defective transcripts were markedly different depending on the type of mutation. Transcripts derived from these three defective genes were scarcely detected, expressed at a lower level, and expressed at almost the same level as in normal volunteers, respectively. CONCLUSIONS: Expression levels of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts of EYS-RP patients vary depending on the type of mutation. Variation in expression levels in transcripts having c.1211dupA, c.4957dupA and c.8805C > A suggests that almost complete nonsense-mediated mRNA decay (NMD), partial NMD and escape from NMD occurred for these transcripts, respectively. To determine the relationship with phenotypic variations in EYS-RP patients, more samples are needed. The present study also suggests that the redirect differentiation method could be a valuable tool for disease modeling despite some limitations.


Asunto(s)
Proteínas del Ojo/genética , Fibroblastos/metabolismo , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Retinitis Pigmentosa/genética , Anciano , Arrestina/genética , Arrestina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas del Ojo/metabolismo , Femenino , Fibroblastos/patología , Regulación de la Expresión Génica , Heterocigoto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Recoverina/genética , Recoverina/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Rodopsina/genética , Rodopsina/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Sci Rep ; 6: 36590, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811999

RESUMEN

Rods and cones are functionally and morphologically distinct. We previously identified N-myc downstream-regulated gene 1b (ndrg1b) in carp as a cone-specific gene. Here, we show that NDRG1b and its paralog, NDRG1a-1, contribute to photoreceptor outer segment (OS) formation in zebrafish. In adult zebrafish photoreceptors, NDRG1a-1 was localized in the entire cone plasma membranes, and also in rod plasma membranes except its OS. NDRG1b was expressed specifically in cones in the entire plasma membranes. In a developing retina, NDRG1a-1 was expressed in the photoreceptor layer, and NDRG1b in the photoreceptor layer plus inner nuclear layer. Based on our primary knockdown study suggesting that both proteins are involved in normal rod and cone OS development, NDRG1a-1 was overexpressed or NDRG1b was ectopically expressed in rods. These forced-expression studies in the transgenic fish confirmed the effect of these proteins on the OS morphology: rod OS morphology changed from cylindrical to tapered shape. These taper-shaped rod OSs were not stained with N,N'-didansyl cystine that effectively labels infolded membrane structure of cone OS. The result shows that rod OS membrane structure is preserved in these taper-shaped OSs and therefore, suggests that tapered OS morphology is not related to the infolded membrane structure in cone OS.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Fotorreceptoras/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Carpas/metabolismo , Membrana Celular/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA