Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 40(5): 1012-1020, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142224

RESUMEN

[18F]F-DPA, a novel translocator protein 18 kDa (TSPO)-specific radioligand for imaging neuroinflammation, has to date been synthesized with low to moderate molar activities (Am's). In certain cases, low Am can skew the estimation of specific binding. The high proportion of the non-radioactive component can reduce the apparent-specific binding by competitively binding to receptors. We developed a nucleophilic synthesis of [18F]F-DPA resulting in high Am (990 ± 150 GBq/µmol) and performed in vivo comparison with low Am (9.0 ± 2.9 GBq/µmol) [18F]F-DPA in the same APP/PS1-21 and wild-type mice (injected masses: 0.34 ± 0.13 µg/kg and 38 ± 15 µg/kg, respectively). The high level of microgliosis in the APP/PS1-21 mouse model enables good differentiation between diseased and healthy animals and serves better to distinguish the effect of differing Am on specific binding. The differing injected masses affect the washout profile and shape of the time-activity curves. Ratios of standardized uptake values obtained with high and low Am [18F]F-DPA demonstrate that there is a 1.5-fold higher uptake of radioactivity in the brains of APP/PS1-21 animals when imaging is carried out with high Am [18F]F-DPA. The differences between APP/PS1-21 and wild-type animals showed higher significance when high Am was used.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Receptores de GABA/análisis , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Ratones
2.
Sci Rep ; 9(1): 5700, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952945

RESUMEN

Back-translation of clinical imaging biomarkers of Alzheimer's disease (AD), such as alterations in cerebral glucose metabolism detected by [18F]FDG positron emission tomography (PET), would be valuable for preclinical studies evaluating new disease-modifying drugs for AD. However, previous confounding results have been difficult to interpret due to differences in mouse models and imaging protocols between studies. We used an equivalent study design and [18F]FDG µPET imaging protocol to compare changes in cerebral glucose metabolism in commercial transgenic APPSwe-PS1dE9 (n = 12), Tg2576 (n = 15), and wild-type mice (n = 15 and 9). Dynamic [18F]FDG scans were performed in young (6 months) and aged (12 or 17 months) mice and the results verified by ex vivo methods (i.e., tissue counting, digital autoradiography, and beta-amyloid and Iba-1 immunohistochemistry). [18F]FDG uptake exhibited significant regional differences between genotypes (TG < WT) and ages (6 months <12 months) in the APPSwe-PS1dE9 model, whereas similar differences were not present in Tg2576 mice. In both models, only weak correlations were detected between regional beta-amyloid deposition or microgliosis and [18F]FDG uptake. By using equivalent methodology, this study demonstrated differences in cerebral glucose metabolism dysfunction detected with [18F]FDG PET between two widely used commercial AD mouse models.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Factores de Edad , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Tomografía de Emisión de Positrones
3.
Mol Imaging Biol ; 21(5): 879-887, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30710261

RESUMEN

PURPOSE: The α2-adrenoceptors mediate many effects of norepinephrine and epinephrine, and participate in the regulation of neuronal, endocrine, cardiovascular, vegetative, and metabolic functions. Of the three receptor subtypes, only α2A and α2C are found in the brain in significant amounts. Subtype-selective positron emission tomography (PET) imaging of α2-adrenoceptors has been limited to the α2C subtype. Here, we report the synthesis of 6-[18F]fluoro-marsanidine, a subtype-selective PET tracer candidate for α2A-adrenoceptors, and its preclinical evaluation in rats and mice. PROCEDURES: 6-[18F]Fluoro-marsanidine was synthesized using electrophilic F-18 fluorination with [18F]Selectfluor bis(triflate). The tracer was evaluated in Sprague Dawley rats and in α2A-knockout (KO) and wild-type (WT) mice for subtype selectivity. In vivo PET imaging and ex vivo brain autoradiography were performed to determine the tracer distribution in the brain. The specificity of the tracer for the target was determined by pretreatment with the subtype-non-selective α2-agonist medetomidine. The peripheral biodistribution and extent of metabolism of 6-[18F]fluoro-marsanidine were also analyzed. RESULTS: 6-[18F]Fluoro-marsanidine was synthesized with [18F]Selectfluor bis(triflate) in a radiochemical yield of 6.4 ± 1.7 %. The molar activity was 3.1 to 26.6 GBq/µmol, and the radiochemical purity was > 99 %. In vivo studies in mice revealed lower uptake in the brains of α2A-KO mice compared to WT mice. The results for selectivity were confirmed by ex vivo brain autoradiography. Blocking studies revealed reduced uptake in α2A-adrenoceptor-rich brain regions in pretreated animals, demonstrating the specificity of the tracer. Metabolite analyses revealed very rapid metabolism of 6-[18F]fluoro-marsanidine with blood-brain barrier-permeable metabolites in both rats and mice. CONCLUSION: 6-[18F]Fluoro-marsanidine was synthesized and evaluated as a PET tracer candidate for brain α2A-adrenoceptors. However, rapid metabolism, extensive presence of labeled metabolites in the brain, and high non-specific uptake in mouse and rat brain make 6-[18F]fluoro-marsanidine unsuitable for α2A-adrenoceptor targeting in rodents in vivo.


Asunto(s)
Imidazolidinas/síntesis química , Indazoles/síntesis química , Radiofármacos/síntesis química , Receptores Adrenérgicos alfa 2/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/sangre , Radioisótopos de Flúor/química , Imidazolidinas/sangre , Imidazolidinas/química , Indazoles/sangre , Indazoles/química , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Ratas Sprague-Dawley , Distribución Tisular
4.
Theranostics ; 9(1): 11-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662550

RESUMEN

Norepinephrine modulates cognitive processes such as working and episodic memory. Pathological changes in norepinephrine and norepinephrine transporter (NET) function and degeneration of the locus coeruleus produce irreversible impairments within the whole norepinephrine system, disrupting cognitive processes. Monitoring these changes could enhance diagnostic accuracy and support development of novel therapeutic components for several neurodegenerative diseases. Thus, we aimed to develop a straightforward nucleophilic fluorination method with high molar activity for the novel NET radiotracer [18F]NS12137 and to demonstrate the ability of [18F]NS12137 to quantify changes in NET expression. Methods: We applied an 18F-radiolabeling method in which a brominated precursor was debrominated by nucleophilic 18F-fluorination in dimethyl sulfoxide. Radiolabeling was followed by a deprotection step, purification, and formulation of the radiotracer. The [18F]NS12137 brain uptake and distribution were studied with in vivo PET/CT and ex vivo autoradiography using both adult and immature Sprague-Dawley rats because postnatal NET expression peaks at 10-20 days post birth. The NET specificity for the tracer was demonstrated by pretreatment of the animals with nisoxetine, which is well-known to have a high affinity for NET. Results: [18F]NS12137 was successfully synthesized with radiochemical yields of 18.6±5.6%, radiochemical purity of >99%, and molar activity of >500 GBq/µmol at the end of synthesis. The in vivo [18F]NS12137 uptake showed peak standard uptake values (SUV) of over 1.5 (adult) and 2.2 (immature) in the different brain regions. Peak SUV/30 min and peak SUV/60 min ratios were calculated for the different brain regions of the adult and immature rats, with a peak SUV/60 min ratio of more than 4.5 in the striatum of adult rats. As expected, in vivo studies demonstrated uptake of the tracer in brain areas rich in NET, particularly thalamus, neocortex, and striatum, and remarkably also in the locus coeruleus, a quite small volume for imaging with PET. The uptake was significantly higher in immature rats compared to the adult animals. Ex vivo studies using autoradiography showed very strong specific binding in NET-rich areas such as the locus coeruleus and the bed nucleus of the stria terminalis, and high binding in larger grey matter areas such as the neocortex and striatum. The uptake of [18F]NS12137 was dramatically reduced both in vivo and ex vivo by pretreatment with nisoxetine, demonstrating the specificity of binding. Conclusions: [18F]NS12137 was synthesized in good yield and high molar activity and demonstrated the characteristics of a good radiotracer, such as good brain penetration, fast washout, and high specific binding to NET.


Asunto(s)
Radioisótopos de Flúor/administración & dosificación , Enfermedades Neurodegenerativas/diagnóstico por imagen , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor/farmacocinética , Ratas Sprague-Dawley , Sensibilidad y Especificidad
5.
Nucl Med Biol ; 67: 1-9, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30317069

RESUMEN

INTRODUCTION: Neuroinflammation is associated with several neurological disorders, including Alzheimer's disease (AD). The translocator protein 18 kDa (TSPO), due to its overexpression during microglial activation and relatively low levels in the brain under normal neurophysiological conditions, is commonly used as an in vivo biomarker for neuroinflammation. Reported here is the preclinical evaluation of [18F]F-DPA, a promising new TSPO-specific radioligand, as a tool for the detection of activated microglia at different ages in the APP/PS1-21 mouse model of AD and a blocking study to determine the specificity of the tracer. METHODS: [18F]F-DPA was synthesised by the previously reported electrophilic 18F-fluorination methodology. In vivo PET and ex vivo brain autoradiography were used to observe the tracer distribution in the brains of APP/PS1-21 and wildtype mice at different ages (4.5-24 months). The biodistribution and degree of metabolism of [18F]F-DPA were analysed and the specificity of [18F]F-DPA for its target was determined by pre-treatment with PK11195. RESULTS: The in vivo PET imaging and ex vivo brain autoradiography data showed that [18F]F-DPA uptake in the brains of the transgenic animals increased with age, however, there was a drop in the tracer uptake at 19 mo. Despite the slight increase in [18F]F-DPA uptake with age in healthy animal brains, significant differences between wildtype and transgenic animals were seen in vivo at 9 months and ex vivo already at 4.5 months. The specificity study demonstrated that PK11195 can be used to significantly block [18F]F-DPA uptake in all the brain regions studied. CONCLUSIONS: In vivo time activity curves plateaued at approximately 20-40 min suggesting that this is the optimal imaging time. Significant differences in vivo are seen at 9 and 12 mo. Due to the higher resolution, ex vivo autoradiography with [18F]F-DPA can be used to visualise activated microglia at an early stage of AD pathology.


Asunto(s)
Acetamidas , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pirazoles , Acetamidas/farmacocinética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Pirazoles/farmacocinética , Distribución Tisular
6.
Neurobiol Aging ; 69: 199-208, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909177

RESUMEN

Contradictory findings on the role of the type 1 cannabinoid receptor (CB1R) during the pathogenesis of Alzheimer's disease (AD) have been reported. Here, we evaluated the CB1R brain profile in an AD mouse model using longitudinal positron emission tomography with an inverse agonist for CB1R, [18F]FMPEP-d2. APP/PS1-21 and wild-type (n = 8 in each group) mice were repeatedly imaged between 6 to 15 months of age, accompanied by brain autoradiography, western blot, and CB1R immunohistochemistry with additional mice. [18F]FMPEP-d2 positron emission tomography demonstrated lower (p < 0.05) binding ratios in the parietotemporal cortex and hippocampus of APP/PS1-21 mice compared with age-matched wild-type mice. Western blot demonstrated no differences between APP/PS1-21 and wild-type mice in the CB1R abundance, whereas significantly lower (p < 0.05) receptor expression was observed in male than female mice. The results provide the first demonstration that [18F]FMPEP-d2 is a promising imaging tool for AD research in terms of CB1R availability, but not expression. This finding may further facilitate the development of novel therapeutic approaches based on endocannabinoid regulation.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Genotipo , Receptor Cannabinoide CB1/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Animales , Encéfalo/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Tomografía de Emisión de Positrones , Pirrolidinonas , Rimonabant/administración & dosificación
7.
J Cereb Blood Flow Metab ; 37(8): 2870-2882, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27834284

RESUMEN

Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo18F-FDG and 18F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18F-FDG and 18F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18F-FDG SUVs were lower and the 18F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo18F-DPA-714 studies but not the 18F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer , Encéfalo , Encefalitis , Metabolismo Energético , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encefalitis/diagnóstico por imagen , Encefalitis/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Ratones Transgénicos , Presenilina-1/genética , Pirazoles , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA