Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 30: 46-61, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37521273

RESUMEN

Artificial bone grafting materials such as collagen are gaining interest due to the ease of production and implantation. However, collagen must be supplemented with additional coating materials for improved osteointegration. Here, we report room-temperature atomic layer deposition (ALD) of MgO, a novel method to coat collagen membranes with MgO. Characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, and electron beam dispersion mapping confirm the chemical nature of the film. Scanning electron and atomic force microscopies show the surface topography and morphology of the collagen fibers were not altered during the ALD of MgO. Slow release of magnesium ions promotes bone growth, and we show the deposited MgO film leaches trace amounts of Mg when incubated in phosphate-buffered saline at 37 °C. The coated collagen membrane had a superhydrophilic surface immediately after the deposition of MgO. The film was not toxic to human cells and demonstrated antibacterial properties against bacterial biofilms. Furthermore, in vivo studies performed on calvaria rats showed MgO-coated membranes (200 and 500 ALD) elicit a higher inflammatory response, leading to an increase in angiogenesis and a greater bone formation, mainly for Col-MgO500, compared to uncoated collagen. Based on the characterization of the MgO film and in vitro and in vivo data, the MgO-coated collagen membranes are excellent candidates for guided bone regeneration.

2.
J Funct Biomater ; 14(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976044

RESUMEN

The membranes used in bone reconstructions have been the object of investigation in the field of tissue engineering, seeking to improve their mechanical strength and add other properties, mainly the osteopromotive. This study aimed to evaluate the functionalization of collagen membranes, with atomic layer deposition of TiO2 on the bone repair of critical defects in rat calvaria and subcutaneous biocompatibility. A total of 39 male rats were randomized into four groups: blood clot (BC), collagen membrane (COL), COL 150-150 cycles of titania, and COL 600-600 cycles of titania. The defects were created in each calvaria (5 mm in diameter) and covered according to each group; the animals were euthanized at 7, 14, and 28 days. The collected samples were assessed by histometric (newly bone formed, soft tissue area, membrane area, and residual linear defect) and histologic (inflammatory cells and blood cells count) analysis. All data were subjected to statistical analysis (p < 0.05). The COL150 group showed statistically significant differences compared to the other groups, mainly in the analysis of residual linear defects (1.5 ± 0.5 × 106 pixels/µm2 for COL 150, and around 1 ± 0.5 × 106 pixels/µm2 for the other groups) and newly formed bone (1500 ± 1200 pixels/µm for COL 150, and around 4000 pixels/µm for the others) (p < 0.05), demonstrating a better biological behavior in the chronology of defects repair. It is concluded that the collagen membrane functionalized by TiO2 over 150 cycles showed better bioactive potential in treating critical size defects in the rats' calvaria.

3.
J Biomed Mater Res B Appl Biomater ; 111(8): 1480-1487, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36920405

RESUMEN

To improve surface properties of poly(methyl methacrylate) (PMMA) using nano-ceramic coatings and assess microbial adherence after long-term use of a chemical cleanser. Thirty-six PMMA samples were fabricated, polished and coated with a nano-thin TiO2 or mixed TiO2 /ZrO2 , with uncoated samples as controls. Six samples in each group (n = 12) were soaked in Polident denture cleaner 180 times for 30 min, while six were soaked in deionized water. Surface roughness of PMMA before and after being soaked in Polident was assessed. All samples were subsequently exposed to Candida albicans for 6 h and the adherent cells were determined by viable colony count. Two-way analysis of variance was performed for statistical analysis. No significant difference in surface roughness was noted between the uncoated and coated PMMA before soaking. After soaking, surface roughness of the uncoated PMMA increased from 0.164 to 0.532 µm (p < .05). No significant change was observed for TiO2 -coated (0.105-0.143 µm) or TiO2 /ZrO2 -coated PMMA (0.104-0.141 µm). Attachment of C. albicans to PMMA soaked in water showed significantly less attachment to both TiO2 -coated (1.4 × 103 cfu/ml) and TiO2 /ZrO2 -coated PMMA (1.6 × 103 cfu/ml) than to the uncoated PMMA (2.6 × 103 cfu/ml). After soaking in Polident, the uncoated PMMA had significantly less C. albicans attachment than coated samples. Less attachment was noted on the TiO2 /ZrO2 -coated PMMA then the TiO2 -coated samples (p < .05). Nano-ceramic TiO22 /ZrO2 coating of PMMA denture base material alters surface properties thus reduces oral microbial adhesion. It represents a promising alternative to the chemical disinfection for PMMA denture materials.


Asunto(s)
Candida albicans , Polimetil Metacrilato , Polimetil Metacrilato/química , Propiedades de Superficie , Agua , Ensayo de Materiales
4.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556554

RESUMEN

The effect of a novel nano-ceramic coating (TiO2) using an atomic layer deposition (ALD) technique on the surface of polymethyl methacrylate (PMMA) material was investigated. The patients' and clinicians' perception and acceptance of the PMMA color with TiO2 coating were also examined. In vitro color measurement was performed on thirty specimens (light, original, and dark pink) before and after TiO2 coating. Patients' and clinicians' perception and acceptance of color changes on PMMA were measured and compared. Descriptive and analytic statistics were analyzed (a = 0.05). TiO2 films were successfully deposited on the PMMA specimen by the ALD technique. Color changes after TiO2 coating were observed on all three PMMA shades, significantly higher than the established 50:50% perceptibility threshold, but below the established 50:50% acceptability threshold. The percentage of patients that perceived a color difference after TiO2 coating were 83.3%, 63.9%, and 77.8% for light, original, and dark pink, respectively. The percentages of clinicians that were satisfied with the color difference were 96.4%, 80%, and 69.2% for light, original, and dark pink, respectively. Color changes after TiO2 coating were observed, but below the acceptable threshold. The clinical survey demonstrated that a color difference was perceived but was clinically acceptable. In general, laypeople have lower perception and higher acceptance of changes in PMMA color than clinicians.

5.
Appl Surf Sci ; 591: 153195, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35370332

RESUMEN

Due to the COVID19 outbreak, there has been increasing interest in tailoring, modifying and improving conventional personal protective equipment to increase their service life and make them more effective against viruses and bacteria. Here, atomic layer deposition (ALD) was used to functionalize the filter of N95 mask with nano-islands of silver. X-ray photoelectron spectroscopy and x-ray absorption fine structure were used for ALD silver characterization; microbiological assay was conducted to study the effectiveness of the deposited silver against the air-borne pathogen Staphylococcus aureus (S. aureus). Results showed that silver ALD successfully functionalized the N95 mask at 90 and 120 °C for two different numbers of ALD cycles (1100 and 1500 cycles). The deposited silver nano-islands were stable on the N95 filter media against washing. The leaching of silver nano-islands was studied using inductively coupled plasma mass spectrometry of phosphate-buffered saline solution after soaking the mask in it over predetermined times. <9% of Ag was removed after a maximum time of 4 h that was investigated. Antimicrobial tests showed that for samples functionalized with 1100 ALD cycles of Ag, 76% reduction in S. aureus colony-forming units content was observed after 24 h of biofilm development on the mask surfaces.

6.
Nanomaterials (Basel) ; 12(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269316

RESUMEN

Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications. However, drawbacks of ALD should be considered. For example, the reaction mechanisms cannot be thoroughly understood through experiments. Moreover, ALD conditions such as materials, pulse and purge durations, and temperature should be optimized for every experiment. It is practically impossible to perform many experiments to find materials and deposition conditions that achieve a thin film with desired applications. Additionally, only existing materials can be tested experimentally, which are often expensive and hazardous, and their use should be minimized. To overcome ALD limitations, theoretical methods are beneficial and essential complements to experimental data. Recently, theoretical approaches have been reported to model, predict, and optimize different ALD aspects, such as materials, mechanisms, and deposition characteristics. Those methods can be validated using a different theoretical approach or a few knowledge-based experiments. This review focuses on recent computational advances in thermal ALD and discusses how theoretical methods can make experiments more efficient.

7.
Acta Biomater ; 121: 103-118, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227485

RESUMEN

Surface functionalization is an effective approach to improve and enhance the properties of dental materials. A review of atomic layer deposition (ALD) in the field of dental materials is presented. ALD is a well-established thin film deposition technique. It is being used for surface functionalization in different technologies and biological related applications. With film thickness control down to Ångström length scale and uniform conformal thin films even on complex 3D substrates, high quality thin films and their reproducibility are noteworthy advantages of ALD over other thin film deposition methods. Low temperature ALD allows temperature sensitive substrates to be functionalized with high quality ultra-thin films too. In the current work, ALD is elaborated as a promising method for surface modification of dental materials. Different aspects of conventional dental materials that can be enhanced using ALD are discussed. Also, the influence of different ALD thin films and their microstructure on the surface properties, corrosion-resistance, antibacterial activity, biofilm formation, and osteoblast compatibility are addressed. Depending on the stage of advancement for the studied materials reported in the literature, these studies are then categorized into four stages: fabrication & characterization, in vitro studies, in vivo studies, and human tests. Materials coated with ALD thin films with potential dental applications are also presented here and they are categorized as stage 1. The purpose of this review is to organize and present the up to date ALD research on dental materials. The current study can serve as a guide for future work on using ALD for surface functionalization and resulting property tuning of materials in real world dental applications.


Asunto(s)
Osteoblastos , Humanos , Reproducibilidad de los Resultados , Propiedades de Superficie , Temperatura
8.
ACS Appl Mater Interfaces ; 12(39): 44371-44380, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32886478

RESUMEN

In modern biomaterial-based electronics, conductive and flexible biomaterials are gaining increasing attention for their wide range of applications in biomedical and wearable electronics industries. The ecofriendly, biodegradable, and self-resorbable nature of these materials makes them an excellent choice in fabricating green and transient electronics. Surface functionalization of these biomaterials is required to cater to the need of designing electronics based on these substrate materials. In this work, a low-temperature atomic layer deposition (ALD) process of platinum (Pt) is presented to deposit a conductive thin film on collagen biomaterials, for the first time. Surface characterization revealed that a very thin ALD-deposited seed layer of TiO2 on the collagen surface prior to Pt deposition is an alternative for achieving a better nucleation and 100% surface coverage of ultrathin Pt on collagen surfaces. The presence of a pure metallic Pt thin film was confirmed from surface chemical characterization. Electrical characterization proved the existence of a continuous and conductive Pt thin film (∼27.8 ± 1.4 nm) on collagen with a resistivity of 295 ± 30 µΩ cm, which occurred because of the virtue of TiO2. Analysis of its electronic structures showed that the presence of metastable state due to the presence of TiO2 enables electrons to easily flow from valence into conductive bands. As a result, this turned collagen into a flexible conductive biomaterial.


Asunto(s)
Colágeno/química , Platino (Metal)/química , Temperatura , Conductividad Eléctrica , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
9.
J Mech Behav Biomed Mater ; 96: 152-164, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31035066

RESUMEN

The long-term survivability of the implants is strongly influenced by the osseointegration aspects of the metal-bone interface. In this study, biological materials such as fibrinogen and fibrin are used to functionalize titanium surfaces to enhance the ability of implants to interact with human tissues for accelerated osseointegration. The biofunctionalized samples that were assessed by White Light Microscope, Scanning Electron Microscope and Water Contact Angle for surface properties proved samples etched with HF/HNO3 to be better than HCl/H2SO4 in terms of having optimum roughness and hydrophilicity for our further experiments. To further investigate the in vitro osseointegration of the biofunctionalized samples, Osteoblasts were cultured on the surfaces to assess cell proliferation, adhesion, gene expression as well as the mineralization process. Further bacterial adhesion (Enterococcus faecalis) and electrochemical evaluation of surface coating stability were carried out. Results of the study show that the biofunctionalized surfaces provided high cell proliferation, adherence, gene expression, and mineralization compared to other control surfaces hence proving them to have efficient and enhanced osseointegration. Also, bacterial adhesion studies show that there is no augmented growth of bacteria on the biofunctionalized samples in comparison to control surfaces. Electrochemical studies proved the existence of a stable protein layer on the bio functionalized surfaces. Such a method can reduce the time for osseointegration that can decrease risks in early failures of implants due to its enhanced hydrophilicity and cytocompatibility.


Asunto(s)
Fenómenos Químicos , Fibrina/química , Fibrinógeno/química , Titanio/química , Titanio/farmacología , Adhesión Bacteriana/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Implantes Dentales , Electroquímica , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Oseointegración/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Estabilidad Proteica , Propiedades de Superficie
10.
J Prosthet Dent ; 121(3): 538-543, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30503151

RESUMEN

STATEMENT OF PROBLEM: Maxillofacial prostheses made of silicone elastomers undergo undesirable color degradation over time. How this color change can be prevented is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the ability of an oxide nanocoating to prevent color degradation of maxillofacial silicone elastomers after artificial accelerated aging. MATERIAL AND METHODS: A silicone elastomer with functional intrinsic pigment was tested. Specimens (N=20) were fabricated, and half of them were coated with a nanolayer of titanium dioxide (TiO2) using atomic layer deposition. Both coated and noncoated specimens (control) were exposed to artificial aging at 450 kJ/m2 of total energy. Changes in the color of all the specimens with and without TiO2 nanocoating were measured before and after the atomic layer deposition coating and before and after aging. The obtained color data were analyzed by using independent t tests and the 1-sample t test (α=.05). RESULTS: Color change (ΔE1=3.4 ±1.4) was observed for the silicone elastomers after the specimens were surface coated with TiO2 nanofilm, although this change was not statistically significant (P=.369) compared with the acceptability threshold (ΔE=3.0). Upon exposure to artificial aging, the noncoated control specimens underwent color change (ΔE2=2.5 ±0.7, P=.083 compared with the acceptability threshold). The specimens with TiO2 nanocoated surface experienced the least color change (ΔE3=1.4 ±0.6) when subjected to artificial aging, and this change was significantly lower (P<.001) than the established acceptability threshold of ΔE=3.0. In addition, the chemical analyses confirmed that the TiO2 nanocoating remained on the surface after exposure to artificial aging. CONCLUSIONS: TiO2 nanocoating was shown to be effective in reducing color degradation of the silicone elastomer exposed to artificial aging for 120 hours with 450 kJ/m2 of total energy.


Asunto(s)
Prótesis Maxilofacial , Coloración de Prótesis , Color , Ensayo de Materiales , Óxidos , Elastómeros de Silicona
11.
ACS Appl Mater Interfaces ; 10(40): 34443-34454, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30212175

RESUMEN

Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical applications. In this study, a commercially available collagen membrane's surface was functionalized by depositing an ultrathin film of titania or titanium dioxide (TiO2) using a room temperature atomic layer deposition (ALD) process. A novel titanium precursor-oxidizer combination was used for this process in a custom-made ALD reactor. Surface characterizations revealed successful deposition of uniform, conformal TiO2 thin film on the collagen fibrillar surface, and consequently, the fibers became thicker making the membrane pores smaller. The in vitro bioactivity of the ALD-TiO2 thin film coated collagen was investigated for the first time using cell proliferation and a calcium phosphate mineralization assay. The TiO2-coated collagen demonstrated improved biocompatibility promoting higher growth and proliferation of human osteoblastic and mesenchymal stem cells when compared to that of noncoated collagen. A higher level of calcium phosphate or apatite formation was observed on ALD modified collagen surface as compared to that on noncoated collagen. Therefore, this novel material can be promising in bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Colágeno , Ensayo de Materiales , Membranas Artificiales , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Titanio , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Colágeno/química , Colágeno/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Titanio/química , Titanio/farmacología
12.
Biointerphases ; 11(3): 031008, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27514370

RESUMEN

Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.


Asunto(s)
Materiales Biocompatibles Revestidos , Propiedades de Superficie , Titanio , Corrosión , Humanos , Células Madre Mesenquimatosas/fisiología , Prótesis e Implantes
13.
J Mech Behav Biomed Mater ; 60: 8-21, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26773646

RESUMEN

Dental implants, inserted into the oral cavity, are subjected to a synergistic interaction of wear and corrosion (tribocorrosion), which may lead to implant failures. The objective of this study was to investigate the tribocorrosion behavior of Ti oxide films produced by micro-arc oxidation (MAO) under oral environment simulation. MAO was conducted under different conditions as electrolyte composition: Ca/P (0.3M/0.02M or 0.1M/0.03M) incorporated with/without Ag (0.62g/L) or Si (0.04M); and treatment duration (5 and 10min). Non-coated and sandblasted samples were used as controls. The surfaces morphology, topography and chemical composition were assessed to understand surface properties. ANOVA and Tukey׳s HSD tests were used (α=0.05). Biofunctional porous oxide layers were obtained. Higher Ca/P produced larger porous and harder coatings when compared to non-coated group (p<0.001), due to the presence of rutile crystalline structure. The total mass loss (Kwc), which includes mass loss due to wear (Kw) and that due to corrosion (Kc) were determined. The dominant wear regime was found for higher Ca/P groups (Kc/Kw≈0.05) and a mechanism of wear-corrosion for controls and lower Ca/P groups (Kc/Kw≈0.11). The group treated for 10min and enriched with Ag presented the lowest Kwc (p<0.05). Overall, MAO process was able to produce biofunctional oxide films with improved surface features, working as tribocorrosion resistant surfaces.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Implantes Dentales , Titanio/química , Corrosión , Ensayo de Materiales , Oxidación-Reducción , Propiedades de Superficie
14.
Mater Sci Eng C Mater Biol Appl ; 59: 677-689, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26652422

RESUMEN

The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.


Asunto(s)
Calor , Nanotubos/química , Titanio/química , Aleaciones , Corrosión , Falla de Prótesis
15.
ACS Appl Mater Interfaces ; 7(17): 9169-77, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25866861

RESUMEN

A high performance Li-S battery with novel fluoroether-based electrolyte was reported. The fluorinated electrolyte prevents the polysulfide shuttling effect and improves the Coulombic efficiency and capacity retention of the Li-S battery. Reversible redox reaction of the sulfur electrode in the presence of fluoroether TTE was systematically investigated. Electrochemical tests and post-test analysis using HPLC, XPS, and SEM/EDS were performed to examine the electrode and the electrolyte after cycling. The results demonstrate that TTE as a cosolvent mitigates polysulfide dissolution and promotes conversion kinetics from polysulfides to Li2S/Li2S2. Furthermore, TTE participates in a redox reaction on both electrodes, forming a solid electrolyte interphase (SEI) which further prevents parasitic reactions and thus improves the utilization of the active material.

16.
Crit Rev Biomed Eng ; 43(4): 255-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27480459

RESUMEN

Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences. ALD is a relatively new technique for optimizing materials for use in bio-nanotechnology. Here, after a brief review of the more widely used modes of ALD and a few of its applications in biotechnology, selected results that show the potential of ALD in bio-nanotechnology are presented. ALD seems to be a promising means for tuning the hydrophilicity/hydrophobicity characteristics of biomedical surfaces, forming conformal ultrathin coatings with desirable properties on biomedical substrates with a high aspect ratio, tuning the antibacterial properties of substrate surfaces of interest, and yielding multifunctional biomaterials for medical implants and other devices.


Asunto(s)
Nanoestructuras , Nanotecnología/métodos
17.
Clin Implant Dent Relat Res ; 17 Suppl 2: e352-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066431

RESUMEN

BACKGROUND: Metals react chemically/electrochemically in electrolytic solutions, such as that present in the oral cavity, which leads to corrosion of metal dental implants. Corrosion can increase the failure rate of dental implants. PURPOSE: This study evaluated the corrosion behavior of nicotine on Ti-6Al-4V under physiological conditions. It was hypothesized that nicotine in artificial saliva would have an adverse effect on the corrosion of Ti-6Al-4V. METHODS: Ti-6Al-4V discs were electrochemically analyzed using a three-electrode electrochemical cell. The disks were immersed in an electrolytic artificial saliva with varying pH (3.0 and 6.5) and nicotine concentration (control, 1 mg/mL, 5 mg/mL, and 20 mg/mL). Open circuit potential, cyclic polarization, and electrochemical impedance spectroscopy (EIS) tests were conducted. RESULTS: Electrochemical parameters indicated that the presence of nicotine significantly reduced (p < .05) the corrosion rate. For example, there was a decrease in corrosion current density from 2.94 × 10(-3) µA/cm(2) to 1.43 × 10(-3) µA/cm(2) in control compared with 20 mg/mL nicotine at pH 6.5. EIS results exhibited an unexpected trend in that the presence of nicotine decreased polarization resistance. This suggested a decrease in passive film growth. CONCLUSIONS: At certain concentrations, nicotine inhibits local corrosion; however, it also prevents the formation of a protective oxide film.


Asunto(s)
Implantes Dentales , Nicotina/efectos adversos , Titanio/química , Aleaciones , Corrosión , Electroquímica , Saliva Artificial/efectos adversos
18.
J Oral Implantol ; 41(5): 523-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24628292

RESUMEN

Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.


Asunto(s)
Nanotubos , Oseointegración , Titanio , Microscopía Electrónica de Rastreo , Óxidos , Propiedades de Superficie
19.
PLoS One ; 9(5): e96213, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788345

RESUMEN

The primary objective of this study was to fabricate a TiO2 nanotubular surface, which could maintain hydrophilicity over time (resist aging). In order to achieve non-aging hydrophilic surfaces, anodization and annealing conditions were optimized. This is the first study to show that anodization and annealing condition affect the stability of surface hydrophilicity. Our results indicate that maintenance of hydrophilicity of the obtained TiO2 nanotubes was affected by anodization voltage and annealing temperature. Annealing sharply decreased the water contact angle (WCA) of the as-synthesized TiO2 nanotubular surface, which was correlated to improved hydrophilicity. TiO2 nanotubular surfaces are transformed to hydrophilic surfaces after annealing, regardless of annealing and anodization conditions; however, WCA measurements during aging demonstrate that surface hydrophilicity of non-anodized and 20 V anodized samples decreased after only 11 days of aging, while the 60 V anodized samples maintained their hydrophilicity over the same time period. The nanotubes obtained by 60 V anodization followed by 600 °C annealing maintained their hydrophilicity significantly longer than nanotubes which were obtained by 60 V anodization followed by 300 °C annealing.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Nanotubos/química , Titanio/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Interferometría/métodos , Microscopía Electrónica de Rastreo/métodos , Nanotubos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Factores de Tiempo , Agua/química
20.
Colloids Surf B Biointerfaces ; 115: 280-5, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24384144

RESUMEN

Surface wettability characteristics of commercially pure titanium (CP-Ti/Ti-II) and titanium Grade 5 alloy (Ti-6Al-4V/Ti-V) with 10nm-thick atomic layer deposited (ALD) TiO2 from Tetrakis DiEthyl Amino Titanium and water vapor were studied in conjunction with cleaning steps before and after the ALD treatment. The wettability characteristics of rough Ti-II and Ti-V samples were investigated after each step, that is, as received, after de-ionized (DI) water rinse followed by N2 drying, sonication in methanol, ALD treatment, and post-ALD DI water rinse. Samples without ALD or cleaning treatments were hydrophobic to variable extents, depending on exposure to different environments, surface impurities, roughness, and aging. Surface treatments reported in the literature resulted in hydrophilic/hydrophobic surfaces likely due to organic and/or inorganic impurities. In this study, (i) it is established that it is critically important to probe surface wettability after each substrate treatment; (ii) both Ti-II and Ti-V surfaces are found to become more hydrophilic after each one of the sequential treatments used; and (iii) independently of the initial wettability characteristics of Ti-II and Ti-V surfaces, the aforementioned treatments result in a water contact angle well below 10°, which is an important factor in cellular response. X-ray photoelectron spectroscopy of ALD titania films indicated trace impurities in them. Grazing incidence X-ray diffraction suggested amorphous ALD TiO2 at 200 °C; anatase TiO2 was obtained with as little as 5 min annealing at 600 °C in nitrogen.


Asunto(s)
Ensayo de Materiales/métodos , Titanio/química , Aleaciones , Espectroscopía de Fotoelectrones , Agua/química , Humectabilidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...