Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 82(2): 291-301, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22584219

RESUMEN

The metabotropic glutamate 1a (mGlu1a) receptor is a G protein-coupled receptor linked with phosphoinositide (PI) hydrolysis and with ß-arrestin-1-mediated sustained extracellular signal-regulated kinase (ERK) phosphorylation and cytoprotective signaling. Previously, we reported the existence of ligand bias at this receptor, inasmuch as glutamate induced both effects, whereas quisqualate induced only PI hydrolysis. In the current study, we showed that mGlu1 receptor agonists such as glutamate, aspartate, and l-cysteate were unbiased and activated both signaling pathways, whereas quisqualate and (S)-3,5-dihydroxyphenylglycine stimulated only PI hydrolysis. Competitive antagonists inhibited only PI hydrolysis and not the ß-arrestin-dependent pathway, whereas a noncompetitive mGlu1 receptor antagonist blocked both pathways. Mutational analysis of the ligand binding domain of the mGlu1a receptor revealed that Thr188 residues were essential for PI hydrolysis but not for protective signaling, whereas Arg323 and Lys409 residues were required for ß-arrestin-1-mediated sustained ERK phosphorylation and cytoprotective signaling but not for PI hydrolysis. Therefore, the mechanism of ligand bias appears to involve different modes of agonist interactions with the receptor ligand binding domain. Although some mGlu1a receptor agonists are biased toward PI hydrolysis, we identified two endogenous compounds, glutaric acid and succinic acid, as new mGlu1 receptor agonists that are fully biased toward ß-arrestin-mediated protective signaling. Pharmacological studies indicated that, in producing the two effects, glutamate interacted in two distinct ways with mGlu1 receptors, inasmuch as competitive mGlu1 receptor antagonists that blocked PI hydrolysis did not inhibit cytoprotective signaling. Quisqualate, which is biased toward PI hydrolysis, failed to inhibit glutamate-induced protection, and glutaric acid, which is biased toward protection, did not interfere with glutamate-induced PI hydrolysis. Taken together, these data indicate that ligand bias at mGlu1 receptors is attributable to different modes of receptor-glutamate interactions, which are differentially coupled to PI hydrolysis and ß-arrestin-mediated cytoprotective signaling, and they reveal the existence of new endogenous agonists acting at mGlu1 receptors.


Asunto(s)
Arrestinas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Ligandos , Receptores Acoplados a Proteínas G/fisiología , beta-Arrestinas
2.
J Biol Chem ; 285(34): 26041-8, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20566651

RESUMEN

Metabotropic glutamate receptor 1 (mGlu1) is a G protein-coupled receptor that enhances the hydrolysis of membrane phosphoinositides. In addition to its role in synaptic transmission and plasticity, mGlu1 has been shown to be involved in neuroprotection and neurodegeneration. In this capacity, we have reported previously that in neuronal cells, mGlu1a exhibits the properties of a dependence receptor, inducing apoptosis in the absence of glutamate, while promoting neuronal survival in its presence (Pshenichkin, S., Dolinska, M., Klauzinska, M., Luchenko, V., Grajkowska, E., and Wroblewski, J. T. (2008) Neuropharmacology 55, 500-508). Here, using CHO cells expressing mGlu1a receptors, we show that the protective effect of glutamate does not rely on the classical mGlu1 signal transduction. Instead, mGlu1a protective signaling is mediated by a novel, G protein-independent, pathway which involves the activation of the MAPK pathway and a sustained phosphorylation of ERK, which is distinct from the G protein-mediated transient ERK phosphorylation. Moreover, the sustained phosphorylation of ERK and protective signaling through mGlu1a receptors require expression of beta-arrestin-1, suggesting a possible role for receptor internalization in this process. Our data reveal the existence of a novel, noncanonical signaling pathway associated with mGlu1a receptors, which mediates glutamate-induced protective signaling.


Asunto(s)
Arrestinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Animales , Células CHO , Cricetinae , Cricetulus , Ácido Glutámico , Humanos , Fosforilación , Sustancias Protectoras , Ratas , Transfección , beta-Arrestina 1 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA