Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Breed ; 44(6): 41, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779634

RESUMEN

In bread wheat (Triticum aestivum L.), fine-tuning the heading time is essential to maximize grain yield. Photoperiod-1 (Ppd-1) and VERNALIZATION 1 (Vrn-1) are major genes affecting photoperiod sensitivity and vernalization requirements, respectively. These genes have predominantly governed heading timing. However, Ppd-1 and Vrn-1 significantly impact heading dates, necessitating another gene that can slightly modify heading dates for fine-tuning. In this study, we developed an early heading mutant from the ethyl methanesulfonate-mutagenized population of the Japanese winter wheat cultivar "Kitahonami." MutMap analysis identified a nonsense mutation in the clock component gene Wheat PHYTOCLOCK 1/LUX ARRHYTHMO (WPCL-D1) as the probable SNP responsible for the early heading mutant on chromosome 3D. Segregation analysis using F2 and F3 populations confirmed that plants carrying the wpcl-D1 allele headed significantly earlier than those with the functional WPCL-D1. The early heading mutant exhibited increased expression levels of Ppd-1 and circadian clock genes, such as WPCL1 and LATE ELONGATED HYPOCOTYL (LHY). Notably, the transcript accumulation levels of Ppd-A1 and Ppd-D1 were influenced by the copy number of the functional WPCL1 gene. These results suggest that a loss-of-function mutation in WPCL-D1 is the causal mutation for the early heading phenotype. Adjusting the functional copy number of WPCL1 will be beneficial in fine-tuning of heading dates. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01478-5.

2.
Sci Rep ; 14(1): 7437, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548857

RESUMEN

Aegilops umbellulata Zhuk., a wild diploid wheat-related species, has been used as a genetic resource for several important agronomic traits. However, its genetic variations have not been comprehensively studied. We sequenced RNA from 114 accessions of Ae. umbellulata to evaluate DNA polymorphisms and phenotypic variations. Bayesian clustering and phylogenetic analysis based on SNPs detected by RNA sequencing revealed two divergent lineages, UmbL1 and UmbL2. The main differences between them were in the sizes of spikes and spikelets, and culm diameter. UmbL1 is divided into two sublineages, UmbL1e and UmbL1w. These genetic differences corresponded to geographic distributions. UmbL1e, UmbL1w, and UmbL2 are found in Turkey, Iran/Iraq, and Greece, respectively. Although UmbL1e and UmbL1w were genetically similar, flowering time and other morphological traits were more distinct between these sublineages than those between the lineages. This discrepancy can be explained by the latitudinal and longitudinal differences in habitats. Specifically, latitudinal clines of flowering time were clearly observed in Ae. umbellulata, strongly correlated with solar radiation in the winter season. This observation implies that latitudinal differences are a factor in differences in the flowering times of Ae. umbellulata. Differences in flowering time could influence other morphological differences and promote genetic divergence between sublineages.


Asunto(s)
Aegilops , Aegilops/genética , Filogenia , Teorema de Bayes , Triticum/genética , Polimorfismo de Nucleótido Simple , Poaceae/genética
3.
PLoS One ; 18(4): e0284408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37104480

RESUMEN

Allopolyploid speciation is a major evolutionary process in wheat (Triticum spp.) and the related Aegilops species. The generation of synthetic polyploids by interspecific crosses artificially reproduces the allopolyploidization of wheat and its relatives. These synthetic polyploids allow breeders to introduce agriculturally important traits into durum and common wheat cultivars. This study aimed to evaluate the genetic and phenotypic diversity in wild einkorn Triticum monococcum ssp. aegilopoides (Link) Thell., to generate a set of synthetic hexaploid lines containing the various Am genomes from wild einkorn, and to reveal their trait characteristics. We examined the genetic diversity of 43 wild einkorn accessions using simple sequence repeat markers covering all the chromosomes and revealed two genetically divergent lineages, L1 and L2. The genetic divergence between these lineages was linked to their phenotypic divergence and their habitats. L1 accessions were characterized by early flowering, fewer spikelets, and large spikelets compared to L2 accessions. These trait differences could have resulted from adaptation to their different habitats. We then developed 42 synthetic hexaploids containing the AABBAmAm genome through interspecific crosses between T. turgidum cv. Langdon (AABB genome) as the female parent and the wild einkorn accessions (AmAm genome) as the male parents. Two of the 42 AABBAmAm synthetic hexaploids exhibited hybrid dwarfness. The phenotypic divergence between L1 and L2 accessions of wild einkorn, especially for days to flowering and spikelet-related traits, significantly reflected phenotypic differences in the synthetic hexaploids. The differences in plant height and internodes between the lineages were more distinct in the hexaploid backgrounds. Furthermore, the AABBAmAm synthetic hexaploids had longer spikelets and grains, long awns, high plant heights, soft grains, and late flowering, which are distinct from other synthetic hexaploid wheat lines such as AABBDD. Utilization of various Am genomes of wild einkorn resulted in wide phenotypic diversity in the AABBAmAm synthetic hexaploids and provides promising new breeding materials for wheat.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Poaceae/genética , Fenotipo , Poliploidía , Genoma de Planta
4.
BMC Genomics ; 23(1): 111, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139819

RESUMEN

BACKGROUND: Gamma-irradiated mutants of Triticum aestivum L., hexaploid wheat, provide novel and agriculturally important traits and are used as breeding materials. However, the identification of causative genomic regions of mutant phenotypes is challenging because of the large and complicated genome of hexaploid wheat. Recently, the combined use of high-quality reference genome sequences of common wheat and cost-effective resequencing technologies has made it possible to evaluate genome-wide polymorphisms, even in complex genomes. RESULTS: To investigate whether the genome sequencing approach can effectively detect structural variations, such as deletions, frequently caused by gamma irradiation, we selected a grain-hardness mutant from the gamma-irradiated population of Japanese elite wheat cultivar "Kitahonami." The Hardness (Ha) locus, including the puroindoline protein-encoding genes Pina-D1 and Pinb-D1 on the short arm of chromosome 5D, primarily regulates the grain hardness variation in common wheat. We performed short-read genome sequencing of wild-type and grain-hardness mutant plants, and subsequently aligned their short reads to the reference genome of the wheat cultivar "Chinese Spring." Genome-wide comparisons of depth-of-coverage between wild-type and mutant strains detected ~ 130 Mbp deletion on the short arm of chromosome 5D in the mutant genome. Molecular markers for this deletion were applied to the progeny populations generated by a cross between the wild-type and the mutant. A large deletion in the region including the Ha locus was associated with the mutant phenotype, indicating that the genome sequencing is a powerful and efficient approach for detecting a deletion marker of a gamma-irradiated mutant phenotype. In addition, we investigated a pre-harvest sprouting tolerance mutant and identified a 67.8 Mbp deletion on chromosome 3B where Viviparous-B1 and GRAS family transcription factors are located. Co-dominant markers designed to detect the deletion-polymorphism confirmed the association with low germination rate, leading to pre-harvest sprouting tolerance. CONCLUSIONS: Short read-based genome sequencing of gamma-irradiated mutants facilitates the identification of large deletions linked to mutant phenotypes when combined with segregation analyses in progeny populations. This method allows effective application of mutants with agriculturally important traits in breeding using marker-assisted selection.


Asunto(s)
Proteínas de Plantas , Triticum , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Triticum/genética
5.
Funct Integr Genomics ; 21(5-6): 535-542, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34405283

RESUMEN

The release of high-quality chromosome-level genome sequences of members of the Triticeae tribe has greatly facilitated genetic and genomic analyses of important crops such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to the large diploid genome size of Triticeae plants (ca. 5 Gbp), transcript analysis is an important method for identifying genetic and genomic differences among Triticeae species. In this review, we summarize our results of RNA-Seq analyses of diploid wheat accessions belonging to the genera Aegilops and Triticum. We also describe studies of the molecular relationships among these accessions and provide insight into the evolution of common hexaploid wheat. DNA markers based on polymorphisms within species can be used to map loci of interest. Even though the genome sequence of diploid Aegilops tauschii, the D-genome donor of common wheat, has been released, the diploid barley genome continues to provide key information about the physical structures of diploid wheat genomes. We describe how a series of RNA-Seq analyses of wheat relatives has helped uncover the structural and evolutionary features of genomic and genetic systems in wild and cultivated Triticeae species.


Asunto(s)
Evolución Molecular , Marcadores Genéticos , Genoma de Planta , RNA-Seq , Triticum/clasificación , Triticum/genética , Hordeum/genética
6.
Sci Rep ; 10(1): 21455, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293651

RESUMEN

Due to large and complex genomes of Triticeae species, skim sequencing approaches have cost and analytical advantages for detecting genetic markers and building linkage maps. Here, we develop a high-density linkage map and identify quantitative trait loci (QTLs) for recombinant inbred lines of Aegilops tauschii, a D-genome donor of bread wheat, using the recently developed genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) system, which facilitates skimming of the large and complicated genome and generates a large number of genetic markers. The deduced linkage groups based on the GRAS-Di genetic markers corresponded to the chromosome number of Ae. tauschii. We successfully identified stable QTLs for flowering time and spikelet shape-related traits. Genotype differences of RILs at the QTL-linked markers were significantly associated with the trait variations. In particular, one of the QTL-linked markers for flowering time was mapped close to VRN3 (also known as FLOWERING LOCUS T), which controls flowering. The GRAS-Di system is, therefore, an efficient and useful application for genotyping and linkage mapping in species with large and complex genomes, such as Triticeae species.


Asunto(s)
Aegilops/genética , Sitios de Carácter Cuantitativo , Genes de Plantas , Endogamia , Fitomejoramiento , Triticum/genética
7.
PLoS One ; 15(4): e0231129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240263

RESUMEN

Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.


Asunto(s)
Aegilops/genética , Cruzamientos Genéticos , Diploidia , Variación Genética , Genoma de Planta , Poliploidía , Triticum/genética , Cromosomas de las Plantas/genética , Ecotipo , Marcadores Genéticos , Dureza , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Semillas/genética , Especificidad de la Especie
8.
BMC Genomics ; 21(1): 246, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32192452

RESUMEN

BACKGROUND: Triticum and Aegilops diploid species have morphological and genetic diversity and are crucial genetic resources for wheat breeding. According to the chromosomal pairing-affinity of these species, their genome nomenclatures have been defined. However, evaluations of genome differentiation based on genome-wide nucleotide variations are still limited, especially in the three genomes of the genus Aegilops: Ae. caudata L. (CC genome), Ae. comosa Sibth. et Sm. (MM genome), and Ae. uniaristata Vis. (NN genome). To reveal the genome differentiation of these diploid species, we first performed RNA-seq-based polymorphic analyses for C, M, and N genomes, and then expanded the analysis to include the 12 diploid species of Triticum and Aegilops. RESULTS: Genetic divergence of the exon regions throughout the entire chromosomes in the M and N genomes was larger than that between A- and Am-genomes. Ae. caudata had the second highest genetic diversity following Ae. speltoides, the putative B genome donor of common wheat. In the phylogenetic trees derived from the nuclear and chloroplast genome-wide polymorphism data, the C, D, M, N, U, and S genome species were connected with short internal branches, suggesting that these diploid species emerged during a relatively short period in the evolutionary process. The highly consistent nuclear and chloroplast phylogenetic topologies indicated that nuclear and chloroplast genomes of the diploid Triticum and Aegilops species coevolved after their diversification into each genome, accounting for most of the genome differentiation among the diploid species. CONCLUSIONS: RNA-sequencing-based analyses successfully evaluated genome differentiation among the diploid Triticum and Aegilops species and supported the chromosome-pairing-based genome nomenclature system, except for the position of Ae. speltoides. Phylogenomic and epigenetic analyses of intergenic and centromeric regions could be essential for clarifying the mechanisms behind this inconsistency.


Asunto(s)
Aegilops/clasificación , Aegilops/genética , Diploidia , Polimorfismo Genético , Triticum/clasificación , Triticum/genética , Cromosomas de las Plantas , Sitios Genéticos , Genoma de Planta , Filogenia , Análisis de Secuencia de ARN
9.
Plant Physiol Biochem ; 150: 71-79, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32120271

RESUMEN

Hybrid necrosis and hybrid chlorosis are sometimes observed in interspecific hybrids between the tetraploid wheat cultivar Langdon and diploid wild wheat Aegilops tauschii. Many WRKY transcription factor genes are dramatically upregulated in necrosis and chlorosis wheat hybrids. Here, we isolated cDNA clones for four wheat WRKY transcription factor genes, TaWRKY49, TaWRKY92, TaWRKY112, and TaWRKY142, that were commonly upregulated in the hybrid necrosis and hybrid chlorosis and belonged to the same clade of the WRKY gene family. Expression patterns of the four TaWRKY genes in response to several stress conditions were similar in wheat seeding leaves. The four TaWRKY-GFP fusion proteins were targeted to the nucleus in onion epidermal cells. The TaWRKY gene expression levels were increased by high salt, dehydration, darkness, and blast fungus treatment in common wheat. Expression of either of the TaWRKY genes increased salinity and osmotic stress tolerance accompanied with overexpression of STZ/Zat10, and induced overexpression of the salicylic acid-signal pathway marker gene AtPR1 in transgenic Arabidopsis. TaWRKY142 expression also induced the jasmonic acid-pathway marker gene AtPDF1.2 and enhanced resistance against the fungal pathogen Colletotrichum higginsianum in transgenic Arabidopsis. These results suggest that the four TaWRKY genes act as integrated hubs of multiple stress signaling pathways in wheat and play important roles in autoimmune response-inducing hybrid necrosis and hybrid chlorosis.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Triticum , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Factores de Transcripción/genética , Triticum/genética
10.
PLoS One ; 15(1): e0228397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31986184

RESUMEN

The breeding of agriculturally useful genes from wild crop relatives must take into account recent and future climate change. In Japan, the development of early heading wheat cultivars without the use of any major gene controlling the heading date is desired to avoid overlap of the harvesting time before the rainy season. Here, we backcrossed two early heading lines of a synthetic hexaploid wheat, derived from a crossing between durum wheat and the wild wheat progenitor Aegilops tauschii, with four Japanese elite cultivars to develop early heading lines of bread wheat. In total, nine early heading lines that showed a heading date two to eight days earlier than their parental cultivars in field conditions were selected and established from the selfed progenies of the two- or three-times backcrossed populations. The whole appearance and spike shape of the selected early heading lines looked like their parental wheat cultivars. The mature grains of the selected lines had the parental cultivars' characteristics, although the grains exhibited longer and narrower shapes. RNA sequencing-based genotyping was performed to detect single nucleotide polymorphisms between the selected lines and their parental wheat cultivars, which revealed the chromosomal regions transmitted from the parental synthetic wheat to the selected lines. The introgression regions could shorten wheat heading date, and their chromosomal positions were dependent on the backcrossed wheat cultivars. Therefore, early heading synthetic hexaploid wheat is useful for fine-tuning of the heading date through introgression of Ae. tauschii chromosomal regions.


Asunto(s)
Aegilops/genética , Cromosomas de las Plantas/genética , Introgresión Genética , Triticum/crecimiento & desarrollo , Diploidia , Endogamia , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN , Triticum/genética , Secuenciación Completa del Genoma
11.
Theor Appl Genet ; 133(5): 1503-1520, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31897516

RESUMEN

KEY MESSAGE: We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.


Asunto(s)
Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo , Triticum/genética , Asia , Triticum/crecimiento & desarrollo
12.
Front Plant Sci ; 10: 686, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214216

RESUMEN

Light is an important factor for determining photosynthetic performance in land plants. At high light intensity, land plants develop photosynthetic activity by increasing electron sinks, such as the Calvin cycle and photorespiration and photoprotective mechanisms in photosystem II (PSII), to effectively utilize light and protect them from photoinhibition. In addition to PSII, photosystem I (PSI) has a risk of undergoing photoinhibition under high light intensity because of the reactive oxygen species (ROS) produced within PSI. However, the acclimation response has hardly been evaluated in the relationship of PSI photoprotection to growth light. In this study, we studied the effect of growth light intensity on the photoprotective mechanisms in PSI using six wheat cultivars. To evaluate the susceptibility of PSI to its photoinhibition, we used the repetitive short-pulse (rSP) illumination method to cause O2-dependent PSI photoinhibition. We found that PSI photoinhibition induced by rSP illumination was much more alleviated in wheat cultivars grown under high-light conditions compared to those grown under low-light conditions. Here, we observed that wheat plant grown under high-light conditions lowered the susceptibility of PSI to its photoinhibition compared to those grown under low-light conditions. Furthermore, the acclimation response toward PSI photoinhibition was significantly different among the studied wheat cultivars, although the quantum yields both of PSII and PSI were increased by high-light acclimation in all wheat cultivars as reported previously. Interestingly, we observed that total chlorophyll content in leaves correlated with the susceptibility of PSI to its photoinhibition. On the basis of these results, we suggest that high-light acclimation induces protection mechanisms against PSI photoinhibition in land plants, and the increase in the leaf chlorophyll content relates to the susceptibility of PSI photoinhibition in wheat plants.

13.
Mol Genet Genomics ; 294(5): 1327-1341, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31187273

RESUMEN

A survey of genome-wide polymorphisms between closely related species is required to understand the molecular basis of the evolutionary differentiation of their genomes. Two wild diploid wheat species, namely Triticum monococcum ssp. aegilopoides and T. urartu, are closely related and harbour the Am and A genomes, respectively. The A-genome donor of tetraploid and common wheat is T. urartu, and T. monococcum ssp. monococcum is the cultivated form derived from the wild einkorn wheat subspecies aegilopoides. Although subspecies aegilopoides has been a useful genetic resource in wheat breeding, genome-wide molecular markers for this subspecies have not been sufficiently developed. Here, we describe the detection of genome-wide polymorphisms such as single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) from RNA sequencing (RNA-seq) data of leaf transcripts in 15 accessions of the two diploid wheat species. The SNPs and indels, detected using the A genome of common wheat as the reference genome, covered the entire chromosomes of these species. The polymorphism information facilitated a comparison of the genetic diversity of einkorn wheat with that of two related diploid Aegilops species, namely, Ae. tauschii and Ae. umbellulata. Cleaved amplified polymorphic sequence (CAPS) markers converted from the SNP data were efficiently developed to confirm the addition of aegilopoides subspecies chromosomes to tetraploid wheat in nascent allohexaploid lines with AABBAmAm genomes. In addition, the CAPS markers permitted linkage map construction in mapping populations of aegilopoides subspecies accessions. Therefore, these RNA-seq data provide information for further breeding of closely related species with no reference genome sequence data.


Asunto(s)
Marcadores Genéticos/genética , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Triticum/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Diploidia , Ligamiento Genético/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Filogenia , Análisis de Secuencia de ARN/métodos , Tetraploidía
14.
Proc Natl Acad Sci U S A ; 116(8): 3082-3090, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728293

RESUMEN

The term "plasmon" is used to indicate the whole cytoplasmic genetic system, whereas "genome" refers to the whole nuclear genetic system. Although maternal inheritance of the plasmon is well documented in angiosperms, its genetic autonomy from the coexisting nuclear genome still awaits critical examination. We tested this autonomy in two related studies: One was to determine the persistence of the genetic effect of the plasmon of Aegilops caudata (genome CC) on the phenotype of common wheat, Triticum aestivum strain "Tve" (genome AABBDD), during 63 y (one generation per year) of repeated backcrosses of Ae. caudata and its offspring with pollen of the same Tve wheat, and the second was to reconstruct an Ae. caudata strain from the genome of this strain and its plasmon that had been resident in Tve wheat for 50 generations, and to compare the phenotypic and organellar DNA characteristics between the native and reconstructed strains. Results indicated no change in the effect of Ae. caudata plasmon on Tve wheat during its stay in wheat for more than half a century, and no difference between the native and reconstructed caudata strains in their phenotype and simple sequence repeats in their organellar DNAs, thus demonstrating the prolonged genetic autonomy of the plasmon from the coexisting genomes of wheat and several other species that were used in the reconstruction of Ae. caudata The relationship between the proven genetic autonomy of the plasmon under changing nuclear conditions and its diversification during evolution of the Triticum-Aegilops complex is discussed.


Asunto(s)
Citoplasma/genética , Evolución Molecular Dirigida , Genoma de Planta/genética , Triticum/genética , Aegilops/genética , Núcleo Celular/genética , Repeticiones de Microsatélite , Filogenia , Semillas/genética
15.
DNA Res ; 26(2): 171-182, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715317

RESUMEN

Dramatic changes occasionally occur in intergenic regions leading to genomic alterations during speciation and will consequently obscure the ancestral species that have contributed to the formation of allopolyploid organisms. The S genome of five species of section Sitopsis of genus Aegilops is considered to be an origin of B-genome in cultivated tetraploid and hexaploid wheat species, although its actual donor is still unclear. Here, we attempted to elucidate phylogenetic relationship among Sitopsis species by performing RNA sequencing of the coding regions of each chromosome. Thus, genome-wide polymorphisms were extensively analyzed in 19 accessions of the Sitopsis species in reference to the tetraploid and hexaploid wheat B genome sequences and consequently were efficiently anchored to the B-genome chromosomes. The results of our genome-wide exon sequencing and resultant phylogenetic analysis indicate that Ae. speltoides is likely to be the direct donor of all chromosomes of the wheat B genome. Our results also indicate that the genome differentiation during wheat allopolyploidization from S to B proceeds at different speeds over the chromosomes rather than at constant rate and recombination could be a factor determining the speed. This observation is potentially generalized to genome differentiation during plant allopolyploid evolution.


Asunto(s)
Aegilops/genética , Evolución Molecular , Genoma de Planta , Filogenia , Hojas de la Planta/genética , Análisis de Secuencia de ARN , Triticum/genética , Aegilops/clasificación , Cromosomas de las Plantas , Genómica , Polimorfismo Genético , Secuenciación del Exoma
16.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486239

RESUMEN

Common wheat originated from interspecific hybridization between cultivated tetraploid wheat and its wild diploid relative Aegilops tauschii followed by amphidiploidization. This evolutionary process can be reproduced artificially, resulting in synthetic hexaploid wheat lines. Here we performed RNA sequencing (RNA-seq)-based bulked segregant analysis (BSA) using a bi-parental mapping population of two synthetic hexaploid wheat lines that shared identical A and B genomes but included with D-genomes of distinct origins. This analysis permitted identification of D-genome-specific polymorphisms around the Net2 gene, a causative locus to hybrid necrosis. The resulting single nucleotide polymorphisms (SNPs) were classified into homoeologous polymorphisms and D-genome allelic variations, based on the RNA-seq results of a parental tetraploid and two Ae. tauschii accessions. The difference in allele frequency at the D-genome-specific SNP sites between the contrasting bulks (ΔSNP-index) was higher on the target chromosome than on the other chromosomes. Several SNPs with the highest ΔSNP-indices were converted into molecular markers and assigned to the Net2 chromosomal region. These results indicated that RNA-seq-based BSA can be applied efficiently to a synthetic hexaploid wheat population to permit molecular marker development in a specific chromosomal region of the D genome.


Asunto(s)
Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Análisis de Secuencia de ARN/métodos , Tetraploidía , Triticum/genética , Mapeo Cromosómico , Marcadores Genéticos , Polimorfismo de Nucleótido Simple/genética
17.
BMC Plant Biol ; 18(1): 271, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409135

RESUMEN

BACKGROUND: Aegilops umbellulata Zhuk. (2n = 14), a wild diploid wheat relative, has been the source of trait improvement in wheat breeding. Intraspecific genetic variation of Ae. umbellulata, however, has not been well studied and the genomic information in this species is limited. RESULTS: To develop novel genetic markers distributed over all chromosomes of Ae. umbellulata and to evaluate its genetic diversity, we performed RNA sequencing of 12 representative accessions and reconstructed transcripts by de novo assembly of reads for each accession. A large number of single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were obtained and anchored to the pseudomolecules of Ae. tauschii and barley (Hordeum vulgare L.), which were regarded as virtual chromosomes of Ae. umbellulata. Interestingly, genetic diversity in Ae. umbellulata was higher than in Ae. tauschii, despite the narrow habitat of Ae. umbellulata. Comparative analyses of nucleotide polymorphisms between Ae. umbellulata and Ae. tauschii revealed no clear lineage differentiation and existence of alleles with rarer frequencies predominantly in Ae. umbellulata, with patterns clearly distinct from those in Ae. tauschii. CONCLUSIONS: The anchored SNPs, covering all chromosomes, provide sufficient genetic markers between Ae. umbellulata accessions. The alleles with rarer frequencies might be the main source of the high genetic diversity in Ae. umbellulata.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Triticum/genética , Mapeo Cromosómico , Diploidia , Ligamiento Genético/genética , Hordeum/genética , Fitomejoramiento , Poaceae/genética
18.
Genetica ; 146(2): 249-254, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29397498

RESUMEN

Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.


Asunto(s)
Poaceae/genética , Alelos , Mapeo Cromosómico , Diploidia , Evolución Molecular , Genes de Plantas , Genes Recesivos , Fenotipo , Poaceae/anatomía & histología , Triticum/genética
19.
Genes Genet Syst ; 93(1): 1-7, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29343667

RESUMEN

Wheat straw is one of the major attractive resources for low-cost raw materials for renewable energy, biofuels and biochemicals. However, like other sources of lignocellulosic biomass, straw is a heterogeneous material due to its mixed origin from different tissue and cell types. Here, to examine the genotypic effects on biorefinery usage of wheat straw, straw obtained from different wheat cultivars and experimental lines was pretreated with dilute acid. Significant differences between cultivars were observed in the concentrations of glucose and toxic by-products of the liquid hydrolysates. A higher content of xylose than glucose was found in liquid hydrolysates from wheat straw, and the xylose content appeared to be affected by both environmental and genetic factors. Analysis using chromosome substitution lines of the common wheat cultivar Chinese Spring showed that chromosomes 2A and 3A from other wheat cultivars, Hope and Timstein, significantly increased the xylose content. However, no significant relationship was observed between the liquid hydrolysate xylose content and the glucose content obtained from enzymatic saccharification of the acid-insoluble residue. These results highlight the potential of wheat breeding to improve biomass-related traits in wheat straw.


Asunto(s)
Ácidos/análisis , Cromosomas de las Plantas/genética , Azúcares/análisis , Triticum/genética , Genotipo , Glucosa/análisis , Hidrólisis , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Energía Renovable , Triticum/química , Xilosa/análisis
20.
Genetica ; 146(1): 75-84, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29101627

RESUMEN

Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F2 mapping population, and found that the F2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.


Asunto(s)
Diploidia , Genes de Plantas , Poaceae/genética , Mapeo Cromosómico , Sitios Genéticos , Técnicas de Genotipaje , Fenotipo , Poaceae/anatomía & histología , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA