Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 212: 108700, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38781635

RESUMEN

Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.

2.
Bioinformation ; 18(2): 88-102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420430

RESUMEN

Heat shock proteins are induced in a wide range of abiotic and biotic stresses. They are well known for cellular chaperone activities and play an important role in protecting plants through regulation of homeostasis and survival. A comprehensive characterization and comparative analysis of the Hsp70 family members within the closely related plant species helps in better interpretation of these proteins' contribution to cell function and response to specific environmental stresses. Therefore, it is of interest to glean insights from the protein sequence analysis of PgHsc 70 and OsHsp70 genes. Thus, we document data from the sequence and structure analysis of PgHsc 70 and OsHsp 70 gene a.

3.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33051408

RESUMEN

Phytophagous insect incidence is a serious threat for reduction of crop productivity globally. There is an estimation of one fourth of crop is being destroyed by insects annually. Indeed, the development of insect-resistant crops is a great milestone in agriculture to increase crop yield and reduce pesticide dependency. Genetic engineering facilitates development of insect resistant crops by expressing bacterial δ-endotoxins and vegetative insecticidal proteins and other plant genes like lectins, protease inhibitors, etc. In addition, RNA interference and genome editing through CRISPR Cas9 also provides new solutions for the development of insect-resistant crops. The resultant genetically modified crops showed resistance against lepidopteran, dipteran, homopteran and coleopteran insects. The insect-resistant crops have made a significant economic impact worldwide in terms of higher yield and low pesticide usage. In this review, we focus on different strategies for developing transgenics against insect pest control by expressing different insecticidal proteins in crops.


Asunto(s)
Toxinas de Bacillus thuringiensis/genética , Productos Agrícolas/genética , Ingeniería Genética/tendencias , Plantas Modificadas Genéticamente/genética , Animales , Bacillus thuringiensis/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología , Edición Génica , Control de Insectos/tendencias , Insectos/patogenicidad , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología
4.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-32020913

RESUMEN

High-yielding Indian cotton varieties are not amenable for regeneration and transformation because they are recalcitrant in nature. In this work, we have developed Narasimha (NA1325) cotton variety by introducing three Cry genes driven by three different promoters conferring insect resistance. The meristematic region of embryo axis explants were infected and co-cultivated with Agrobacterium tumefacience (LBA4404) harbouring pMDC100 vector with three Cry gene cassettes (alpha-globulin : Cry2Ab, DECaMV35s : Cry1F and nodulin : Cry1Ac) with Npt II as a selectable marker gene. Out of 1010 embryo axes explants infected, 121 (T0) regenerated under two rounds of kanamycin selectionmedium.About 2551T1 seedswere collected from111T0 plants and these seeds screened again with kanamycin at seedling stage. The transgenic plants were characterized by PCR, real time quantitative PCR, lateral flow strip protein assay and insect bioassay. Out of 145 kanamycin resistant plants (T1), twelve showed amplification of all four transgenes: Npt II, Cry2Ab, Cry1F and Cry1Ac through PCR with expected amplicons as 395, 870, 840 and 618 bp, respectively. Further, lateral flow strip test revealed Cry1F and Cry1Ac proteins accumulated in 12 plants, whereas Cry2Ab protein was detected in eight only. The transcripts of all three Cry genes were accumulated significantly higher in transgenic plants at T2 generation. The transgenic lines showed effective resistance againstHelicoverpa armigera and Spodoptera litura larvae. The T2 line L-3 exhibited highest percentage of insect mortality, in which transcripts of all cry genes were accumulated higher than other plants. The transgenic cotton plants carrying triple Cry genes could be an excellent germplasmresource for the breeders for introgressions.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/genética , Gossypium/genética , Gossypium/metabolismo , Larva/virología , Nucleopoliedrovirus/patogenicidad , Plantas Modificadas Genéticamente/genética , Animales , Proteínas de Insectos , Receptores de Superficie Celular , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...