Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930287

RESUMEN

This work presents issues related to selected errors accompanying spatial measurements of surface roughness using contact profilometry. The influence of internal heat sources, such as engines or control electronics, on the thermal expansion of the drive responsible for the measurement probe's movement in the X-axis direction was investigated. In terms of starting measurements on a thermally unstable device, the synchronization error of individual profile paths was 16.1 µm. Based on thermographic studies, the time required for full thermal stabilization of this drive was determined to be 6-12 h from when the device was turned on. It was demonstrated that thermal stabilization of the profilometer significantly reduced positioning errors of the measurement probe on the X-axis. Thermal stabilization time should be determined individually for a specific device variant. This research also determined how changes in the center of gravity caused by the measurement probe's movement affected the overall rigidity of the profilometer structure and the leveling of the tested surface. Laser interferometry was used for this purpose. The determined vulnerability of the profilometer structure was 0.8 µm for a measurement section of 25 mm. Understanding the described relationships will reduce errors associated with conducting measurements and preparing equipment for tests. Additionally, it will enable the correct evaluation of surface geometry.

2.
J Mech Behav Biomed Mater ; 150: 106247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988883

RESUMEN

Needle insertion is one of the most common procedures in clinical practice. Existing statistics reveal that success rates of needle insertions can be low, leading to potential complications and patient discomfort. Real-time imaging techniques like ultrasound and X-ray can assist in improving precision, but even experienced practitioners may face challenges in visualizing the needle tip. Researchers have proposed models of force interactions during needle insertions into biological tissue to enhance accuracy. This article presents an evaluation of the forces acting on intravenous needles during insertion into skin. The aim was to explore mathematical models, compare them with data from tests on animal specimens, and select the most suitable model for future research. The experimental setup involved conducting needle insertion tests on animal-originated cadavers, using the Brucker Universal Mechanical Tester device, which measured the force response during vertical movement of the needle. The research was divided into 2 stages. In Stage I, force measurements were recorded for both the insertion and extraction phases of the hypodermic needles. The measurements were conducted for several different needle sizes, speed and insertion angles. In Stage II, five different models were examined to determine how well they matched the experimental data. Based on the analysis of fit quality coefficients, the Gordon's exponential model was identified as the best fit to the measured data. The influence of needle size, insertion angle, and insertion speed on the measured force values was confirmed. Different insertion speeds revealed the viscoelastic properties of the tested samples. The presence of the skin layer affected the puncture force and force values for subsequent layers.


Asunto(s)
Fenómenos Mecánicos , Agujas , Animales , Humanos , Modelos Teóricos
3.
Materials (Basel) ; 16(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37512235

RESUMEN

The aim of this research was to analyze the effect of inorganic additives on the tribological properties of the high-density polyethylene (HDPE) matrix composite surface. Titanium (Ti) and hexagonal boron nitride (hBN) were added in different mass fractions. The samples were produced by pressing a pre-prepared mixture of granules. The composite samples with the following mass fractions of additives were fabricated: 5% hBN, 10% hBN, 28% Ti-2% hBN, 23% Ti-7% hBN, and 20% Ti-10% hBN. An even distribution of individual additives' concentrations was confirmed. Observations of morphology, surface topography, hardness, and tribological measurements were conducted using reciprocating motion tests with the "pin-on-flat" and rotational tests with the "pin-on-disc" configuration. Subsequently, microscopic observations and measurements of the wear track profile were carried out. Additionally, geometry parameters of the contacting elastic body were calculated for various counter-samples. It was found that the Shore D hardness of samples containing Ti and hBN increased with the Ti content, while the coefficient of friction (COF) value decreased. The addition of hBN alone did not significantly affect the hardness, regardless of the ratio, while the COF increased with the increasing hBN content. The COF value doubled with the addition of 10% hBN (COF = 0.22), whereas the addition of 90% Ti-10% hBN resulted in a decrease in the COF value, to COF = 0.83. The highest hardness value was obtained for the sample containing 28% Ti-2% hBN (66.5), while the lowest was for the sample containing 10% hBN (63.2). The wear track analysis, including its height and width caused by deformation, was detected using a focal differentiation microscope and scanning electron microscopy. Additionally, EDS maps were generated to determine the wear characteristics of the composite.

4.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374480

RESUMEN

Mechanical processing of cortical bone tissue is one of the most common surgical procedures. A critical issue accompanying this processing is the condition of the surface layer, which can stimulate tissue growth and serve as a drug carrier. A comparison of the surface condition before and after orthogonal and abrasive processing was conducted to validate the influence of bone tissue's processing mechanism and orthotropic properties on the surface topography. A cutting tool with a defined geometry and a custom-made abrasive tool was used. The bone samples were cut in three directions, depending on the orientation of the osteons. The cutting forces, acoustic emission, and surface topography were measured. The level of isotropy and the topography of the grooves showed statistical differences relative to the anisotropy directions. After orthogonal processing, the surface topography parameter Ra was determined from 1.38 ± 0.17 µm to 2.82 ± 0.32. In the case of abrasive processing, no correlation was found between the orientation of osteons and topographical properties. The average groove density for abrasive machining was below 1004 ± 0.7, and for orthogonal, it was above 1156 ± 58. Due to the positive properties of the developed bone surface, it is advisable to cut in the transverse direction and parallel to the axis of the osteons.

5.
Materials (Basel) ; 15(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36143728

RESUMEN

Cortical bone machining is commonly used in craniofacial surgery. The shaping of bone surfaces requires a precise determination of the process's complexity due to the cutting tool's defined or undefined geometry. Therefore, research was carried out to assess the impact of the rake angle (γ), clearance angle and depth of cut (d) on the cortical bone machining process. Analysis was carried out based on the orthogonal cutting in three directions. The cutting tool shape was simplified, and the cutting forces and the chip-formation process were monitored. The highest values of the resultant cutting force and shear force were recorded for γ < 0. The specific cutting force decreases with the increase of d. Cutting in the transverse direction is characterized by the highest values of resultant cutting force and shear force. The coefficient of friction depends primarily on the d and takes a constant value or increases with the increase of γ. The tests showed that the chips are formed in the entire range of d ≥ 0.5 µm and create regular shapes for d ≥ 10 µm. The research novelty confirms that even negative cutting angles guarantee controlled cutting and can find wider application in surgical procedures.

6.
J Funct Biomater ; 13(3)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36135588

RESUMEN

The abrasive machining of cortical tissue is used in many arthroplasties and craniofacial surgery procedures. However, this method requires further research due to the processes' complexity and the tissue's composite structure. Therefore, studies were carried out to assess the impact of grid geometry and the anisotropic structure of bone tissue on the cutting process and crack propagation. The analysis was performed based on an orthogonal cutting in three directions. The grain shape has been simplified, and the cutting forces, crack path and surface quality were monitored. The results indicate that a depth of cut at 100−25 µm allows the most accurate cutting control. A transverse cutting direction results in the greatest surface irregularity: Iz = 17.7%, Vvc = 3.29 mL/m2 and df = 5.22 µm and generates the most uncontrolled cracks. Maximum fracture force values of FF > 80 N were generated for d = 175 µm. For d < 5 µm, no cracks or only slight penetration occurs. A positive γ provides greater repeatability and crack control. Negative γ generates penetrating cracks and uncontrolled material damage. The individual types of cracks have a characteristic course of changes in Fx. The clearance angle did not affect the crack propagation.

7.
Materials (Basel) ; 14(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443010

RESUMEN

The article presents the results of mechanical and tribological tests of Ni-P/Si3N4 nanocomposite coatings deposited on the AW-7075 aluminum alloy using the chemical reduction method. The influence of the chemical composition on the Vickers microhardness determined by the DSI method was examined. The nanocomposite layers were made of Si3N4 silicon nitride in a polydisperse powder with a particle size ranging from 20 to 25 nm. The influence of the content of the dispersion layer material on the adhesion to the substrate was analyzed. The abrasive wear was tested and determined in the reciprocating motion using the "ball-on-flat" method. The surface topography was examined by the contact method with the use of a profilometer. Based on the obtained test results, it was found that the Ni-P/Si3N4 layers produced in the bath with the Si3N4 nanoparticle content in the amount of 2 g/dm3 are more resistant to wear and show greater adhesion than the Ni-P/Si3N4 layers deposited in the bath with 5 g/dm3 of the dispersion phase. NiP/Si3N4 layers provide protection against abrasive wear under various loads and environmental conditions.

8.
Materials (Basel) ; 13(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481744

RESUMEN

The WCCo/PCD (Diamond Dispersed Cemented Carbide-DDCC) manufactured with the use of PPS (pulse plasma sintering) are modern materials intended for cutting tools with the benefits of tungsten carbides and polycrystalline diamonds. Nevertheless, the cutting performance of DDCC materials are currently not recognized. Thus this study proposes the evaluation of technological effects of a precise groove turning process of hard-to-cut AlSi13MgCuNi alloy with DDCC tools. The conducted studies involved the measurements of machined surface topographies after grooving with different cutting parameters. In addition, the tool life and wear tests of DDCC inserts were conducted during grooving process and the obtained results were compiled with values reached during machining with cemented carbide tools. It was also proved that grooving of AlSi13MgCuNi alloy with DDCC inserts enables 5 times longer tool life and almost 3-fold increase of cutting path compared to values obtained during grooving with H3 and H10 cemented carbide inserts. Ultimately, the feed value of f = 0.15 mm/rev and cutting speed in a range of 800 m/min ≤ vc ≤ 1000 m/min during grooving with DDCC inserts can be defined as an optimal machining parameters, enabling the maximization of tool life and improvement in surface quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA