Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Ergon ; 113: 104096, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490790

RESUMEN

Marksmanship performance while moving is a critical skill among tactical athletes due to the high demands of their occupational duties. Qualifications for dynamic marksmanship performance are not standardized across tactical athlete groups, which may limit comprehensive assessment of tactical athlete performance for situational awareness and adaptability to an unpredictable environment. Although static marksmanship performance provides foundational information on skills and level of ability, research is lacking on factors that influence dynamic marksmanship performance to best prepare tactical athletes for duties. The purpose of this study was to identify whether static marksmanship performance, speed of movement, load carriage, and biomechanical factors while 'shooting on the move' influenced dynamic marksmanship performance. Twenty-four male tactical athletes (22 active-duty Army Soldiers, two civilian SWAT operators; age: 23.83 ± 5.47 years; height: 1.80 ± 0.08 m; weight: 81.04 ± 7.87 kg) participated; final analyses did not include data from the two civilian operators to maintain sample homogeneity. Tactical athletes completed static and dynamic ('shoot on the move') marksmanship tasks under three load conditions: (1) no load (NL), (2) half kit (HK) of 11.34 kg, and (3) full kit (KIT) of 22.68 kg. Dynamic marksmanship was completed under three speed conditions: (1) self-selected slow speed, (2) standard speed, and (3) self-selected fast speed. Hip, knee, and ankle kinematics were collected via wireless inertial measurement units. Spatiotemporal parameters were collected via optical detection system. Marksmanship performance (accuracy) was collected via open-air acoustic target scoring and mean radial error (MRE) was calculated for both static and dynamic marksmanship tasks. Linear mixed-effects models were fit with dynamic MRE as the outcome variable with fixed effects of static MRE, load condition, speed condition, kinematics, and spatiotemporal parameters, adjusting for body mass. Alpha level was set a priori at p ≤ 0.10. The final statistical model included fixed effects of static MRE, load condition, speed condition, and time spent in double limb support. Static MRE (p < 0.01) and time spent in double limb support (p = 0.01) were significant factors. For each 1 cm increase in static MRE there was a 0.66 cm increase in dynamic MRE. For every 1% increase in time spent in double limb support while 'shooting on the move' there was a 0.13 cm increase in dynamic MRE. Findings from this study highlight that tactical athletes who have larger static stance MRE and spend a longer time in double limb support during a gait cycle exhibit an increase in MRE during 'shoot on the move' trials. Overall, dynamic shooting accuracy is not affected by lower extremity joint angles, load carriage, or speed of movement. Although strong relationships are known between gait speed, load, and lower extremity kinematics, the differences in tactical gait compared to normal gait and multi-task paradigm that likely favors marksmanship accuracy seem to present novel movement characteristics unique to occupational gait. Further investigation is warranted to identify other potential factors that may improve or worsen dynamic marksmanship performance.


Asunto(s)
Marcha , Caminata , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Extremidad Inferior , Articulación de la Rodilla , Velocidad al Caminar , Fenómenos Biomecánicos
2.
Appl Ergon ; 109: 103991, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841096

RESUMEN

The dynamic work environments of tactical athletes are difficult to replicate in a laboratory. Accelerometers and inertial measurement units provide a way to characterize movement in the field. This systematic review identified how accelerometers and inertial measurement units are currently being used to quantify movement patterns of tactical athletes. Seven research and military databases were searched, producing 26,228 potential articles with 78 articles included in this review. The articles studied military personnel (73.1%), firefighters (19.2%), paramedics (3.8%), and law enforcement officers (3.8%). Accelerometers were the most used type of sensor, and physical activity was the primarily reported outcome variable. Seventy of the studies had fair or poor quality. Research on firefighters, emergency medical services, and law enforcement officers was limited. Future research should strive to make quantified movement data more accessible and user-friendly for non-research personnel, thereby prompting increased use in tactical athlete groups, especially first responder agencies.


Asunto(s)
Acelerometría , Socorristas , Personal Militar , Actividad Motora , Humanos , Bomberos , Movimiento , Paramédico , Policia
3.
Mil Med ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705463

RESUMEN

INTRODUCTION: Personnel engaged in high-stakes occupations, such as military personnel, law enforcement, and emergency first responders, must sustain performance through a range of environmental stressors. To maximize the effectiveness of military personnel, an a priori understanding of traits can help predict their physical and cognitive performance under stress and adversity. This work developed and assessed a suite of measures that have the potential to predict performance during operational scenarios. These measures were designed to characterize four specific trait-based domains: cognitive, health, physical, and social-emotional. MATERIALS AND METHODS: One hundred and ninety-one active duty U.S. Army soldiers completed interleaved questionnaire-based, seated task-based, and physical task-based measures over a period of 3-5 days. Redundancy analysis, dimensionality reduction, and network analyses revealed several patterns of interest. RESULTS: First, unique variable analysis revealed a minimally redundant battery of instruments. Second, principal component analysis showed that metrics tended to cluster together in three to five components within each domain. Finally, analyses of cross-domain associations using network analysis illustrated that cognitive, health, physical, and social-emotional domains showed strong construct solidarity. CONCLUSIONS: The present battery of metrics presents a fieldable toolkit that may be used to predict operational performance that can be clustered into separate components or used independently. It will aid predictive algorithm development aimed to identify critical predictors of individual military personnel and small-unit performance outcomes.

4.
J Athl Train ; 58(5): 452-457, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984719

RESUMEN

CONTEXT: Because of the close proximity of the cochlea, vestibular apparatus, and shared neurovascular structures, the static postural control of athletes who are deaf or hard of hearing (D/HoH) may be different from that of athletes who are hearing. Limited research is available to quantify differences between these athletes. OBJECTIVE: To determine the effect of hearing status and stance condition on the static postural control of athletes. DESIGN: Cross-sectional study. SETTING: Athletic training facilities. PATIENTS OR OTHER PARTICIPANTS: Fifty-five collegiate varsity athletes who were D/HoH (age = 20.62 ± 1.80 years, height = 1.73 ± 0.08 m, mass = 80.34 ± 18.92 kg) and 100 university club athletes who were hearing (age = 20.11 ± 1.59 years, height = 1.76 ± 0.09 m, mass = 77.66 ± 14.37 kg). MAIN OUTCOME MEASURE(S): Participants completed the Modified Clinical Test of Sensory Interaction and Balance on a triaxial force plate. Anteroposterior and mediolateral (ML) center-of-pressure (CoP) velocity, anteroposterior and ML CoP amplitude root mean square, and 95% ellipse sway area were calculated. RESULTS: Athletes who were D/HoH had a larger CoP velocity, larger ML root mean square, and larger sway area than those who were hearing (P values < .01). A significant main effect of stance condition was observed for all postural control variables (P values < .01). CONCLUSIONS: During the Modified Clinical Test of Sensory Interaction and Balance, athletes who were D/HoH demonstrated a larger sway area compared with athletes who were hearing. Therefore, individualized baseline assessments of static postural control may be warranted for athletes who are D/HoH as opposed to comparisons with existing normative data.


Asunto(s)
Atletas , Equilibrio Postural , Humanos , Adolescente , Adulto Joven , Adulto , Estudios Transversales , Audición
5.
J Appl Biomech ; 35(4): 272-279, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31034324

RESUMEN

Although single-leg squats are a common dynamic balance clinical assessment, little is known about the relationship between parameters that influence squat movement and postural control performance. The objective of this study was to determine the relationships between squat parameters (speed and depth) and postural control under single task and dual task. A total of 30 healthy college students performed single-leg squats under single task and dual task with Stroop. Random-intercepts generalized linear mixed models determined the effect of squat parameters on center of pressure (CoP) parameters. For each 1-cm·s-1 increase in squat speed, sway range (mediolateral: ß = -0.03; anteroposterior: ß = -0.05) and area (ß = -0.25) decreased, whereas sway speed (mediolateral: ß = 0.05; anteroposterior: ß = 0.29; total: ß = 0.29) increased. For each 1-cm increase in squat depth, sway range (mediolateral: ß = 0.05; anteroposterior: ß = 0.20) and area (ß = 0.72) increased, whereas sway speed (anteroposterior: ß = -0.14; total: ß = -0.14) decreased. Compared with single task, the association between total and anteroposterior sway speed and squat speed was stronger under dual task. Clinicians and researchers should consider monitoring squat speed and depth when assessing dynamic balance during single-leg squats, as these parameters influence postural control, especially under dual task.


Asunto(s)
Movimiento/fisiología , Equilibrio Postural/fisiología , Postura/fisiología , Estudios Transversales , Femenino , Humanos , Masculino , Adulto Joven
6.
J Biomech ; 74: 143-149, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752054

RESUMEN

Soldiers are fielded with a variety of equipment including battery powered electronic devices. An energy harvesting assault pack (EHAP) was developed to provide a power source to recharge batteries and reduce the quantity and load of extra batteries carried into the field. Little is known about the biomechanical implications of carrying a suspended-load energy harvesting system compared to the military standard assault pack (AP). Therefore, the goal of this study was to determine the impact of pack type and load magnitude on spatiotemporal and kinematic parameters while walking at 1.34 m/s on an instrumented treadmill at decline, level, and incline grades. There was greater forward trunk lean while carrying the EHAP and the heavy load (decline: p < 0.001; level: p = 0.009; incline: p = 0.003). As load increased from light to heavy, double support stance time was longer (decline: p = 0.012; level: p < 0.001; incline: p < 0.001), strides were shorter (incline: p = 0.013), and knee flexion angle at heel strike was greater (decline: p = 0.033; level: p = 0.035; incline: p = 0.005). When carrying the EHAP, strides (decline: p = 0.007) and double support stance time (incline: p = 0.006) was longer, the knee was more flexed at heel strike (level: p = 0.014; incline: p < 0.001) and there was a smaller change in knee flexion during weight acceptance (decline: p = 0.0013; level: p = 0.007; incline: p = 0.0014). Carrying the EHAP elicits changes to gait biomechanics compared to carrying the standard AP. Understanding how load-suspension systems influence loaded gait biomechanics are warranted before transitioning these systems into military or recreational environments.


Asunto(s)
Suministros de Energía Eléctrica , Marcha/fisiología , Soporte de Peso , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Personal Militar , Adulto Joven
7.
J Sports Sci ; 35(11): 1118-1124, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27498815

RESUMEN

Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s-1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s-1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.


Asunto(s)
Cognición/fisiología , Pierna/fisiología , Equilibrio Postural/fisiología , Análisis y Desempeño de Tareas , Estudios Transversales , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Memoria/fisiología , Pruebas Neuropsicológicas , Tiempo de Reacción , Test de Stroop , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA